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Zusammenfassung

In dieser Dissertation wurde eine Erweiterung der reduzierte Basis�Me-

thode für allgemeine nicht�lineare Evolutionsprobleme entwickelt. Bisherige

Verö�entlichungen auf diesem Gebiet machen Annahmen an die Art der zu-

grundeliegenden Nicht�Linearitäten oder an die Trennung von Parametern

und Ortsvariablen. Durch die Verallgemeinerung der empirischen Interpola-

tionsmethode für Funktionen auf diskrete Operatoren, können diese Restrik-

tionen aufgehoben werden. Die entwickelten Methoden und algorithmischen

Verbesserungen wurden anhand einiger Beispiele für skalare Evolutionsprob-

leme getestet und analysiert. Hierbei wurde jeweils eine zeitliche Modellre-

duktion um eine Gröÿenordnung festgestellt. Als Ausblick wurde zudem ein

Zwei�Phasenströmungsmodell mit der Methode der empirischen Operator�

Interpolation reduziert. Auch hier kann ein Geschwindigkeitsgewinn durch

die Projektion auf einen reduzierte Basis�Raum festgestellt werden.
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CHAPTER 1

Introduction

During the last years, numerical simulations of processes in all sciences,

industry and economy have gained importance. The reason for this is a

signi�cant improvement of processor hardware and the involved algorithms

for the discrete solution of partial di�erential equations (PDEs). In most

cases, however, these simulations consume an extremely huge amount of

computational power, such that even on high�performance architectures,

simulations can take many hours or even days.

Therefor, real�time or many�query applications which depend on several

repeated simulations are still infeasible to deal with. Real�time applications

are those, which have constraints on the response time for a numerical sim-

ulation, or depend on anytime available computational power, which is not

the case for current super�computers. In the many�query context, where

several simulations need to be carried out on the same problem, one is usu-

ally interested in the optimization or estimation of certain parameters or

tries to model stochastic behavior of the underlying system.

The reduced basis method is a means to deal with such applications for

simulations based on a partial di�erential equation (PDE). The idea is to �rst

introduce a parametrization of the problem which restricts the solution space

to solutions of interest for the application. Then, the essential characteristics

of this manifold of solution can be captured with the goal to approximate the

simulation output in an e�cient and reliable way. The latter implies the need

for e�ciently computable bounds on the error between the high�dimensional

and the reduced simulation.

Then, the reduced basis method is decomposed into two parts: an o�ine

and an online phase. During the o�ine phase, few high�dimensional compu-

tations are carried out, and during the online phase, we work with surrogate

solvers e�ciently and reliably generating low�dimensional solution outputs,

such that these solvers can be used in real�time or many�query applications.

The parametrization of the underlying PDE can models e.g. initial or

boundary conditions, and inertial model properties. A huge e�ort has also

been put on the special case of shape design [64, 56], where the geome-

try of the spatial problem domain, gets parametrized. The quality of the

parametrization of the PDE can have a big impact on the quality of the

1



2 1. INTRODUCTION

reduced basis surrogate solver. Therefor, a focused choice of the parameter

space is of great importance.

There even exist a priori convergence results for the reduced basis method,

�rst proven for the single�parameter case [54] and recently for the multi�

parameter case [7, 4, 34]. For these convergence results, it has to be as-

sumed that the manifold S ⊂ Wh of all parametrized solutions shows an

exponentially or polynomially decreasing Kolmogorov N -width in the dis-

crete function space Wh. This Kolmogorov N -width measures the error of

the worst approximation by a linear function space of dimension N , by

dN (S,Wh) := inf
Ŵ⊂Wh

dim(Ŵ)=N

sup
vh∈S

min
uh∈Ŵ

‖vh − uh‖Wh
. (1.1)

The complete theory for the reduced basis method, including e�cient re-

duced schemes, basis generation algorithms and a posteriori error estimates,

has been developed during the last years, mainly for discretizations based on

the �nite element method. For linear elliptic problems, we refer to [61] and

for linear parabolic problems to [33]. This was later extended to problems

with quadratic non�linearities [74, 73, 58]. Most of the early publications

made the assumption, that the parameter dependent contributions can be

e�ciently separated from the space dependent functions and operators in the

original scheme. This assumption can be dropped, since the introduction of

the empirical interpolation method (EIM) [1]. The method allows to inter-

polate parametrized functions in a suitable constructed linear function space

by localized and therefor e�cient computations. The integration of the EIM

on the reduced basis method has been proven in several works afterwards,

e.g. [32, 52, 31, 8].

Goals and outline

The main goal of this thesis is the extension of the above described re-

duced basis method to the general case of non�linear, parametrized evolution

equations of the form

∂tu(µ)− L(µ)[u(µ)] = 0 on Ω× [0, Tmax] (1.2)

for all parameters µ ∈ M from some parametrization spaceM ⊂ Rp. Here
L is a parametrized di�erential operator and uh the parametrized solution

trajectory. As a preliminary step, scalar partial di�erential equations are

considered, but the long�term goal is the simulation of a system modeling

two phase �ow, which is a problem that is of interest mainly in the oil

production context or in environmental applications.



GOALS AND OUTLINE 3

Extending previous work on reduced basis methods, we allow all kind of

non�linearities. This leads to the notion of the empirical operator interpo-

lation, which is the main part of this work and detailed in Chapter 2. It is

based on the work in [39], where it was �rst suggested to apply the empiri-

cal interpolation method on operators and tested for explicit discretization

schemes. In this work, we generalize the idea, de�ne derivatives for the

empirical interpolants, in order to integrate them into non�linear implicit

discretizations, transfer the results for a priori and a posteriori error results

from [1] and discuss on the invariance of operator properties under empirical

interpolation. In the latter case, we have especially �nite volume operators

in mind, as these are used in our numerical experiments.

The empirical interpolation of operators in numerical schemes is from

a computationally point of view similar to the recently developed discrete

empirical interpolation method (DEIM) [16] or to the interpolation point se-

lection method for the �Gauÿ�Newton with approximated Tensors� (GNAT)

method [11]. Other, than in those approaches the relationship to the func-

tion spaces of the high�dimensional problem is preserved. This simpli�es

the derivation of reduced basis schemes and a posteriori error estimators. In

Chapter 3, we present such a scheme and a very general a posteriori error

estimator for discretization of a generalized evolution scheme. As mentioned

earlier this scheme allows all kind of non�linear behavior. This gives rise to

a very �exible model order reduction with the reduced basis method, as it

is presented in Chapter 6. There, a system of partial di�erential equations

modeling immiscible and incompressible two phase �ow in a porous media

is discretized by a �nite volume method proposed in [57] and shown that it

can be decomposed into o�ine and online simulations.

In Chapter 4 the generation and quality of convergence of reduced basis

spaces is discussed. We revise the most popular algorithms to �nd character-

istic reduced basis functions which well approximate the parametrized solu-

tions, namely proper orthogonal decomposition (POD) and di�erent greedy

algorithms. For the latter, an new variant is proposed and described in

this chapter, that automatically reconstructs the optimal ratio between the

quality of the reduced basis approximation and the empirical operator in-

terpolation. This is of great importance, as the standard greedy algorithm

forces the experimenter to make assumptions on this ratio a priori, which is

in general infeasible.

The reason for this is the di�culty to compute the constants specifying

the exact rate of the error decrease, a priori. Thus, it is impossible to predict

the reduced basis size needed to reach a given error tolerance. Nonetheless,

for many applications, it is realistic to assume an exponential decay of the
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Kolmogorov N -width of the manifold of solution snapshots. This gives rise

to smart algorithms that increase the reduced basis size incrementally and

split the complexity in the parameter space if necessary. Such algorithms

have been developed recently, e.g. [29, 21, 24, 35]. In Section 4.4 these smart

algorithms are described by means of our own contribution splitting the time

domain for the empirical interpolation.

As there always remains a risk that the reduced basis method does not

lead to the anticipated performance gain, we assume, that rapid prototyp-

ing of a reduced basis framework for an existing detailed scheme is of high

importance. Therefor, in Chapter 7, the software used to implement the

numerical examples is described and analyzed in order to derive an abstract

software concept from it. It is shown, where implementations of reduced

basis methods can be split into independent components, with the goal to

re�use existing approaches for the rapid development of prototypes of the

reduced basis method for untested detailed schemes.

For all the theoretical and algorithmic improvements, extensive numer-

ical experiments are carried out. The results are summarized and analyzed

in Chapters 5 and 7.

The main parts, including the empirical operator interpolation, the a

posteriori error estimate and the PODEI-greedy for a synchronized gener-

ation of reduced basis approximations and empirical operator interpolations,

have already been published in [25].

Other approaches generate small reduced basis spaces for small reference

domains and combine the results with domain decomposition techniques [65,

40].



CHAPTER 2

Empirical operator interpolation

As explained in the introduction, the reduced basis method depends on

underlying numerical schemes which allow to separate the parameter depen-

dent in�uences from the space dependent parts. Therefor, early publications

on this topic considered discretizations of linear problems, e.g. [60, 66] or

problems with quadratic non�linearities, e.g. [51, 73]. Furthermore, most

of them required all parameter dependent functions g : Ω ×M → R to be

regular, such that g(·;µ) ∈ L∞(Ω) for all parameters µ ∈ M ⊂ Rp and to

be of a separable form

g(x;µ) =

Q∑
q=1

σq(µ)gq(x) (2.1)

with parameter independent functions gq ∈ L∞(Ω).

As these assumptions are very restrictive, the empirical interpolation

method (EIM) was introduced in [1]. This method allows to interpolate

parametrized functions with a small set of data functions which are ex-

act in certain interpolation points x1, . . . , xM ∈ Ω, called �magic points�

in the original publication. A suitable selection of these ansatz functions

ξ1, . . . , ξM ∈ L∞ then makes the interpolants

IM [g(x;µ)] =

M∑
m=1

g(xM ;µ)ξm (2.2)

good approximations of the data function g(x;µ) for all parameters µ ∈M
and x ∈ Ω. The interpolation costs are lower than the exact evaluation,

because they depend on the evaluation of the function in the few �magic

points� only.

The empirical interpolation method has been adapted to many di�erent

problem settings. These methods are published under the notions �discrete

empirical interpolation� (DEIM) [16], �multi�component empirical interpo-

lation� (MCEIM) [71], the equivalent �tensorized empirical interpolation�

(TEIM) [44] and �Gauÿ-Newton with approximated tensors� (GNAT) [9, 11].

Other than in the original empirical interpolation approach [1], in this

work, we want to de�ne an empirical interpolation of operators Lh(µ) :

5



6 2. EMPIRICAL OPERATOR INTERPOLATION

Wh → Wh acting on a discrete function space Wh. The goal is to interpo-

late operator evaluations Lh(µ) [uh(µ)] of parametrized solution snapshots

uh(µ) ∈ Wh. Therefor, the empirical interpolant IM [Lh(µ)] : Wh → Wh of

a discrete operator is de�ned by the interpolation of operator evaluations,

such that

IM [Lh(µ)] [·] = IM [Lh(µ)[·]] . (2.3)

This concept, �rst introduced in [37] leads to the notion empirical oper-

ator interpolation. It gives us the opportunity to rewrite numerical schemes

by substituting the spatial operators with their empirical interpolants and

to develop reduced schemes based on the high dimensional ones, even if the

operators are non�linear or cannot be separated from the parameter. For

details we refer to Chapter 3. In Section 2.2.2 we show that also the Fréchet

derivative of a discrete operator can be interpolated e�ciently, and thus en-

ables us to embed the operator into non�linear numerical schemes depending

on the Newton�Raphson method or other optimization algorithms.

Throughout this thesis, we will demonstrate the applicability of the em-

pirical operator interpolation on several numerical reduced basis schemes

with and without non�linear behavior. The full �exibility of our approach

to empirical interpolation will be demonstrated in Chapter 6, where a sys-

tem of partial di�erential equations will be reduced with the reduced basis

method and specialized empirical interpolants.

The interpolation of operators instead of model functions has two further

advantages, because

(i) it allows to deal with schemes, where the non�linearities are intro-

duced by the discretization, like in �ux based discretizations as such

derived by �nite volume or discontinuous Galerkin methods, and

(ii) in many applications the reduced basis space is composed of the

same solution �snapshots� as the ansatz space for the empirical in-

terpolation. Therefor, only one space needs to be generated.

If the empirical operator interpolation is used as described in (ii), it is

computationally equivalent to the �discrete empirical interpolation method�

(DEIM) [16] or the �Gauss�Newton with approximated tensors� (GNAT)

methods [9, 11].

In the next section, we de�ne the empirical operator interpolation for

discrete operators by specifying the generation of the ansatz functions and

the interpolation Dofs which correspond to the �magic point� in the original

empirical interpolation. Afterwards, we discuss the computational complex-

ities for evaluations of empirical interpolants in Section 2.2. A priori and a

posteriori error results for the original EIM can be transferred to the context
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of operator interpolation, which is done in 2.3. In Section 2.4, we conclude

with the discussion on linear operator properties which are retained by the

empirical interpolants.

2.1. Basis generation and Dof selection

Before we start with the description of the empirical operator interpola-

tion, we introduce some notation used subsequently.

De�nition 2.1.1 (Discrete function space). We write Wh ⊂ L∞(Ω) for a

�nite dimensional discrete function space equipped with a norm ‖·‖Wh
and

de�ned on a closed subset Ω ⊂ Rn with a non empty interior and a polygonal

boundary. Following the notation of a �nite element by P.G. Ciarlet [19], we

de�ne the set Σh := {τi}Hi=1 ⊂ W ′h of linearly independent functionals, which

are unisolvent onWh, i.e. there exist unique functions ψi ∈ Wh, i = 1, . . . ,H

which satisfy

τj(ψi) = δij , 1 ≤ j ≤ H.
The linear functionals τi, i = 1, . . . ,H are called the degrees of freedom

(DOFs) of the discrete function space Wh and the functions ψi, i = 1, . . . ,H

are called basis functions. Note, that these basis functions can e.g. be �-

nite element, �nite volume or discontinuous Galerkin basis functions on a

numerical grid Th ⊂ Ω.

From now on, Lh(µ) : Wh → Wh always denotes a discretized (non-

linear) operator acting on an H-dimensional discrete function space Wh. In

order to decompose the computations in an e�cient online and an o�ine

phase for high-dimensional data, the scheme must be formulated in a sepa-

rable way, i.e. the discrete operators are written as a sum of products of e�-

ciently computable parameter dependent functionals and high�dimensional

basis functions that can be precomputed during the o�ine phase.

Hence, we approximate the discrete operators by an empirical inter-

polant IM [Lh(µ)] of the form

IM [Lh(µ)] [vh] :=
M∑
m=1

τEIm (Lh(µ) [vh]) ξm ≈ Lh(µ) [vh] (2.4)

for arguments vh ∈ Wh. Ingredients for the interpolation are the collateral

reduced basis ξM := {ξm}Mm=1 ⊂ WH and interpolation Dofs τEIm : Wh → R
which must be computable with complexity independent of H. The sum is

assumed to contain few terms, i.e. M � H.

One can think of many reasonable choices for collaterate basis functions

and corresponding interpolation Dofs, but we focus on a speci�cation result-

ing in the empirical operator interpolation speci�ed in the next section.
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2.1.1. Empirical Operator Interpolation. The empirical operator

interpolation method can brie�y be expressed based on a set of interpolation

DOFs ΣM := {τEIm }Mm=1 ⊂ Σh and a corresponding interpolation basis ξM ,

which is nodal in the interpolation DOFs, i.e. τEIm′ [ξm] = δm,m′ for 1 ≤
m,m′ ≤M . The generation process for these components works similarly to

the algorithm described in the original empirical interpolation paper [1] in

which point evaluations in so-called �magic points� are used as interpolation

DOFs after the basis functions were selected.

The idea of the empirical interpolation data generation is sketched in

Algorithm 2.1.1. First, for each parameter from a �nite training set of pa-

rameters Mtrain ⊂ M, exact operator evaluations on also parametrized ar-

guments uh(µ) ∈ Wh are computed and the empirical interpolated results

of the operator evaluations are computed. Note, that the parametrization of

the argument functions is important in order to de�ne the manifold of oper-

ator evaluations that shall be approximated well by our empirical operator

interpolation.

Then, the function space norm of the residual between the exact and

the interpolated operator evaluations, gives a measure for the quality of

the interpolation. Alternatively, we could also use the L∞-norm, like in

the original empirical operator interpolation [1]. In this case, rigorous a

posteriori error estimates can be constructed as is shown in Section 2.3.

In most applications, however, better interpolation results can be expected

when the interpolation error is minimized in the more �natural� norm of the

discrete function space.

The general idea of a greedy algorithm is to improve the approximation

with the help of the worst parameter µmax. In case of the empirical operator

interpolation, this improvement is realized by

(1) selecting the residual rM (µmax) as a new basis vector and

(2) using the residual's degree of freedom with largest absolute value

as a new �magic point� after normalization in the L∞ norm.

With this strategy, the approximation is expected to improve with growing

reduced basis size M . In [1] an a priori estimate for the empirical interpola-

tion error veri�es this expectation for reasonable assumptions. The result is

cited in Section 2.3.

Remark 2.1.2. The nodal basis ξM := {ξm}Mm=1 introduced in equation

(2.1.1) is constructed from the iteratively created basis QM := {qm}Mm=1 by

the constructive relation

ξi =
M∑
j=1

(B−1)ijqj , (2.6)
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Algorithm 2.1.1 Greedy algorithm for collateral reduced basis generation
EI-greedy

EI-Greedy()
� Start with empty initial basis:

Q0 ← {}
Σ0 ← {}
M ← 0

for each µ ∈Mtrain ⊂M do

� Compute exact operator evaluations on parametrized functions
vh(µ)← Lh(µ)[uh(µ)]

end for

repeat

for each µ ∈Mtrain ⊂M do

� Compute interpolation coe�cients

σM (µ) :=
(
σMj (µ)

)M
j=1
∈ RM

� by solving the linear equation system at EI�Dofs ΣM =
{
τEIi

}M
i=1

:

M∑
j=1

σMj (µ)τEIi [qj ] = τEIi [vh(µ)] , i = 1, . . . ,M (2.5)

� Determine residuals:
rM (µ)← vh(µ)−∑M

j=1 σ
M
j (µ)qj

end for

� Determine parameter with maximum approximation error:
µmax ← arg supµ∈Mtrain

‖rM (µ)‖Wh(
or: µmax ← arg supµ∈Mtrain

‖rM (µ)‖L∞(Ω)

)
� De�ne the maximum residual.

εM+1 ← rM (µmax)
� Find interpolation Dof maximizing the residual.

τEIM+1 ← arg supτ∈Σh
|τ(εM+1))|

� Normalize to obtain a new collateral reduced basis function.
qM+1 ← (τEIM+1(rM (µmax)))−1 · rM (µmax)

� extend basis data:
QM+1 ← QM ∪ {qM+1}
ΣM+1 ← ΣM ∪

{
τEIM+1

}
M ←M + 1

until ‖rM (µmax)‖Wh
≤ εtol or M > Mmax

� construct nodal basis as described in Remark 2.1.2.
WM = span {ξm}Mm=1

where the matrix B ∈ RM×M is given by its coe�cients

Bij := τEIj [qi] . (2.7)
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The regularity of the matrix B is trivially proven by the special structure of

the basis QM , such that

τEIm [qm′ ] =


1 for m = m′,

0 for m < m′ and

c ∈ [−1, 1] else

(2.8)

leading to a lower triangular matrix with ones on the diagonal. The nodal

basis ξM has the special structure τEIm [ξ′m] = δmm′ for all 1 ≤ m,m′ ≤M . It

allows a simpler exposition of the empirical interpolation Dofs. However, in

[1, 32] it is shown that the maximum norms of the nodal base functions can

grow exponentially. Indeed, this fact can lead to infeasible Lebesgue constants

quantifying the error ratio between the empirical interpolation and the best

approximation in the collateral reduced basis space. The Lebesgue constant

is detailed in Section 2.3. Due to the expected growth of the Lebesgue con-

stant, we use the basis QM in the implementation, but keep ξM for simpler

exposition in the following paragraphs.

Remark 2.1.3. It is worth to mention, that the loops over the training set

Mtrain for the computation of the operator evaluations and for the search for

the worst approximation parameters in Algorithm 2.1.1 can easily be executed

in parallel with hardly any communication costs.

It is noteworthy, that there exist alternative approaches of basis genera-

tion ([16, 9]) in which the reduced basis is generated by a proper orthogonal

decomposition (POD) of selected solution snapshots, and afterwards a dis-

crete empirical interpolation method on the system matrices is applied re-

ducing the number of matrix rows, such that after projection on the reduced

basis space only a low�dimensional system of linear equations needs to be

solved.

As in this case the number of interpolation points (matrix rows) can

exceed the reduced basis space dimension, an extension of the method is

necessary, �nding the best least squares approximation [9].

In Section 4.3.1, we propose a further approach for the generation of a

collateral reduced basis and empirical interpolation Dofs, by improvement

of the interpolation based on an error measure derived from a reduced basis

scheme.

2.2. Interpolation e�ciency

Now, we show under which conditions the empirical interpolation Dofs

can be computed e�ciently, i.e. with complexity independent of the dis-

crete function space dimension H. As a further extension, we show that the
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Fréchet derivative of a discrete operator can be e�ciently approximated with

the same collateral reduced basis as the operator itself.

An e�cient evaluation of the functionals τEIm (Lh(µ) [vh]) for every µ ∈
M and every argument function vh ∈ {uh(µ)|µ ∈M} requires them to

depend on few basis functions only. This fact inspires the following de�nition.

De�nition 2.2.1 (H-independent Dof dependence). With an H-dimensional

function space Wh, a discrete operator Lh(µ) : Wh → Wh ful�lls an H-

independent Dof dependence, if there exists a constant C � H independent

of H such that for all τ ∈ Σh a restriction operator

RCτ :Wh →Wh, vh =

H∑
i=1

τi(vh)ψi 7→
∑
j∈Iτ

τj(vh)ψj (2.9)

exists, that restricts the operator argument to |Iτ | ≤ C degrees of freedom

and the equation

τ (Lh(µ) [vh]) = τ
(
Lh(µ)

[
RCτ [vh]

])
(2.10)

still holds for all vh ∈ Wh.

Remark 2.2.2. In particular, �nite element or �nite volume operators ful�ll

the H-independent Dof dependence, as a point evaluation of an operator ap-

plication only requires data of the argument on neighboring grid cells together

with geometric information of this subgrid.

2.2.1. Evaluation of interpolation functionals τEI
m ◦ Lh(µ). As-

suming this H-independence condition for a parametrized discrete operator,

its empirical interpolant can be evaluated e�ciently, i.e. independently of

the dimension H. This result is summarized in the following corollary.

Corollary 2.2.3. Let for each µ ∈M the discrete operators Lh(µ) :Wh →
Wh ful�ll the H-independent Dof dependence and let ΣM and ξM be de-

termined for this operator by Algorithm 2.1.1. Then, the empirical operator

interpolation IM de�ned by

IM [Lh(µ)] [vh] :=
M∑
m=1

τEIm (Lh(µ) [vh]) ξm (2.11)

gives a separable approximation of Lh(µ) depending on at most CM degrees

of freedom for each evaluation.

Ignoring the parameter independent collateral basis functions, an evalua-

tion of the empirical interpolant has a complexity independent of the dimen-

sion H. This fact holds during a reduced basis simulation, because then the



12 2. EMPIRICAL OPERATOR INTERPOLATION

collateral reduced basis functions are substituted by low�dimensional surro-

gates, which are computed during the o�ine phase. Details on this reduction

can be found in the next Chapter 3.

2.2.2. Evaluation of interpolated Fréchet derivative. Many solvers

for numerical approximations of nonlinear partial di�erential equations use

the Newton�Raphson method to resolve non�linearities in the equation and

therefore depend on derivatives of discrete operators. It is easy to observe

that the Fréchet derivative can also be applied to the empirical interpolant

of an operator Lh(µ) as

D (IM [Lh(µ)|uh ]) [·] =
M∑
m=1

D
(
τEIm ◦ Lh(µ)|uh

)
[·] ξm. (2.12)

For an e�cient usage of such an interpolation in a reduced scheme, it

su�ces to show that the functionals D
(
τEIm ◦ Lh(µ)|uh

)
can be evaluated

e�ciently: Assuming the existence of the derivatives w.r.t. the degrees of

freedom, we obtain with the linearity of the derivative

D
(
τEIm ◦ Lh(µ)|uh

)
[vh] = D

(
τEIm ◦ Lh(µ)|uh

) [ H∑
i=1

τi(vh)ψi

]

=

H∑
i=1

D
(
τEIm ◦ Lh(µ)|uh

)
[ψi] τi(vh)

=
H∑
i=1

∂

∂ψi
τEIm (Lh(µ) [uh]) τi(vh)

=
∑
i∈I

τEIm

∂

∂ψi
τEIm (Lh(µ) [uh]) τi(vh).

(2.13)

The reduction in the number of addends holds true, as substituting the Dof

τEIm (Lh(µ) [uh]) by its restriction τEIm
(
Lh(µ)

[
RCτm [uh]

])
shows that most of

the directional derivatives are zero. Each summand depends on one degree

of freedom of the directional function vh and at most C degrees of freedom

of uh summing up to an overall complexity of C2M � H. Again, this result

with all its prerequisites is summarized in the following corollary.

Corollary 2.2.4. Let the parametrized operators Lh(µ) be as in Corollary

2.2.3 with a Fréchet derivative at the point uh ∈ Wh. Then, the Fréchet deriv-

ative of the empirical operator interpolation evaluated in direction vh ∈ Wh

is a separable approximation of DLh(µ)|uh [vh] with complexity independent

of H for all t ∈ [0, Tmax] and µ ∈ M if the derivatives ∂
∂ψi

τEIm (Lh(µ) [uh])

exist for all i = 1, . . . ,H and m = 1, . . . ,M .
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Note, that it might be necessary to change the greedy algorithm, in a

way such that evaluations

DLh(µ)|uh(µ) [vh(µ)] (2.14)

are also used in order to �nd functions for the collateral reduced basis space.

2.3. Error analysis

For the analysis of the interpolation error in empirical operator interpo-

lation, we shortly revise that the empirical operator interpolation is theoret-

ically equivalent to the empirical interpolation of functions

g(x;µ) := Lh (µ) [uh(µ)] (2.15)

de�ned by the corresponding operator evaluations for all parameters µ ∈M.

Therefore, in this section the most important results from [1, 53] are only

shortly cited and translated to our notation. We conclude with a discussion

on the a posteriori error bound which is used in Chapter 3 in order to derive

an a posteriori error for a reduced basis scheme.

In the following, we always assume, that the collateral reduced basis

space and the empirical interpolation Dofs are derived with Algorithm 2.1.1,

where the parameter training set equals the full parameter spaceMtrain =M
and the maximum approximation error is obtained in the L∞-norm.

Theorem 2.3.1 (A priori bound). Assuming, that for the set of admissible

operator evaluations U := {Lh(µ) [uh(µ)]}µ∈M ⊂ Wh, there is a sequence of

�nite dimensional subspaces

Z1 ⊂ Z2 ⊂ . . . ⊂ ZM ⊂ . . . ⊂ span U , dimZM = M, (2.16)

and constants c > 0 and α > log(4), such that the best approximations in

the subspaces are bounded by

inf
vM∈ZM

‖uh − vM‖Wh
≤ ce−αM (2.17)

for all snapshots u ∈ U , then

‖IM [u]− u‖ ≤ ce−(α−log(4))M . (2.18)

Proof. See [53] �

This theorem proves that the greedy Algorithm 2.1.1 iteratively improves

the interpolation under the reasonable assumption of a possible exponential

convergence of reduced basis approximations. The next result provides us

with an a priori quality measure for the selection of the interpolation points.
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Lemma 2.3.2 (Lebesgue constant). For any µ ∈M, the empirical operator

interpolation error is related to its best approximation by

‖Lh(µ) [uh(µ)]− IM [Lh(µ)] [uh(µ)]‖L∞
≤ (1 + ΛM ) inf

vh∈WM

‖vh − Lh(µ) [uh(µ)]‖L∞ (2.19)

via the Lebesgue constant

ΛM := sup
x∈Ω

M∑
m=1

|ξm(x)| ≤ 2M − 1. (2.20)

Proof. See [1] �

So, theoretically the best approximation in the collateral reduced basis

space can be missed by the empirical interpolation by a factor depending ex-

ponentially on the number of the interpolation points. In this very unlikely

case, the Greedy algorithm does not converge, as the convergence result from

Theorem 2.3.1 gets �neutralized� by the interpolation error. Although the

Lebesgue constant can indeed reach this bound, as shown in [53], this is very

unlikely to happen and has not been observed in practical settings. Note,

that the Lebesgue constant of collateral reduced basis can be computed for

veri�cation. These observations are also veri�ed by [59] where the empirical

interpolation method is numerically compared to a �best point approxima-

tion� where expensive optimization problems are solved in order to �nd the

best interpolation Dofs.

As the construction process of the collateral reduced basis with Algo-

rithm 2.1.1 in each extension step computes the maximum error in the

L∞(Ω)-norm over the the entire parameter domain, we can de�ne the fol-

lowing

De�nition 2.3.3 (Overall a posteriori error bound). For all M ≤ Mmax,

we de�ne the overall error bound ε∗M (µ) for all u ∈ U by

‖u− IM−1 [u]‖L∞ ≤ τEIM [εM ] =: ε∗M (µ), (2.21)

where εM is the maximum residual in the M -th iteration as computed in

Algorithm 2.1.1

There exists a more sophisticated rigorous a posteriori error bound [28]

for the maximum interpolation error over all parameters µ ∈ M mainly

based on the Lebesgue constant ΛM from Lemma 2.3.2. The authors improve

the a posteriori error by bounding the partial derivatives of the parametric

function

µ 7→ Lh(µ)[uh(µ)].
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Another approach in this direction is demonstrated in [16, 14] where also an

overall error bound is given introducing an assumption that again forgoes

rigorousness.

We want to conclude this section with a very simple a posteriori error

estimate for the empirical operator interpolation which is sensitive in the

parameter. As the empirical interpolation is exact in case of

dimWM = min {dim(Wh), dim(span U)} , (2.22)

and as we can assume exponential convergence of the greedy algorithm under

the assumptions in Theorem 2.3.1, it is reasonable to further assume, that the

empirical operator interpolation in a large enough collateral reduced basis

space and with a su�cient number of interpolation Dofs, is exact.

De�nition 2.3.4 (A posteriori error). Under the assumption that there ex-

ists a constant M ′ > 0 such that IM+M ′ [Lh(µ)] [uh(µ)] = Lh(µ)[uh(µ)] for

all µ ∈ M and all uh ∈ Wh, the approximation error ηEIM,M ′(µ) caused by

the empirical operator interpolation is given by

‖IM [Lh(µ)] [uh(µ)]− Lh(µ)[uh(µ)]‖Wh

=

∥∥∥∥∥
M+M ′∑
m=M+1

τEIm (Lh(µ)[uh(µ)])ξm

∥∥∥∥∥
Wh

=: ηEIM,M ′(µ). (2.23)

This estimate has been proposed in several works, e.g. [32, 71, 39] who

�xed M ′ = 1. We extended this to arbitrary M ′ in order to obtain more

reliable results. In order to evaluate the a posteriori error, it is neces-

sary to adapt the greedy Algorithm 2.1.1 to compute more basis functions

qM+1, . . . , qM+M ′ and interpolation Dofs τEIM+1, . . . , τ
EI
M+M ′ after the targeted

interpolation error εtol has been reached. In our numerical experiments in

Chapter 5, we show that already small choices forM ′ can produce su�ciently

good estimations of this error.

Note, that both rigorousness and sensitivity in the parameter can be

combined, even if we drop the assumption in De�nition 2.3.4 in an error

estimate

η∗M,M ′ := ηEIM,M ′(µ) + CWh
ε∗M+M ′ , (2.24)

where CWh
> 0 is a constant satisfying

‖u‖L∞(Ω) ≤ CWh
‖u‖Wh

(2.25)

for all u ∈ Wh. Such a constant exists, as all norms on �nite dimensional

vector spaces are equivalent. Such an error estimate has been used in [71].

For the practical applications in this thesis, the bound ηEIM,M ′ from (2.3.9)

will be used, as the sensitiveness in the parameter is required for the basis
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generation algorithms shown in Chapter 4 and it turns out to produce su�-

ciently accurate results in our experiments.

2.4. Invariant properties

We want to conclude this chapter by stating that operator properties

with a somehow linear behavior are preserved by its empirical interpolants.

First, we want to show that the local conservation property of �nite

volume operators is preserved by its empirical interpolant. This result is of

interest in chapters 3 and 5, as we use a �nite volume schemes as a basis for

our numerical experiments.

De�nition 2.4.1 (Local conservative �ux operator). In order to de�ne the

local conservation property for a �ux operator Lh : Wh → Wh, we need

a neighbor relation N : [1, . . . ,H] → P({1, . . . ,H}) on the Dof indices

1, . . . ,H of the function space , where P denotes the power set. This neighbor

relation must be symmetric, such that

j ∈ N (i)⇒ i ∈ N (j). (2.26)

For grid based operators this usually describes the topology of the grid, i.e. the

neighboring relation of cells. Then, the operator is called locally conservative

for this neighbor relation N , if there exist �uxes gij : Wh → R, for all

i = 1, . . . ,H and j ∈ N (i), such that the operator evaluation in the i-th Dof

can be written as

τi [Lh [·]] =
∑

j∈N (i)

gij(·) (2.27)

and gij = −gji.

Now, we can formulate a lemma, stating the invariance of the local con-

servation property for empirical interpolants of discrete operators.

Lemma 2.4.2. If for all µ ∈ M, the parametrized �nite volume operator

Lh(µ) :Wh →Wh has a locally conservative �ux g(µ; ·), then the empirical

interpolant IM [Lh(µ)] inherits the local conservation property.

Proof. We assume, that the EI-greedy algorithm selected the param-

eters µEI
1 , . . . ,µ

EI
M for the extension of the collateral reduced basis space, such

that the basis functions are given by

qm = cm
(
Lh [uh] (µEIm )

)
− Im−1 [Lh]

[
uh(µEIm )

]
(2.28)

with normalization factors cm :=
(
τEIm (rm)

)−1
(c.f. Algorithm 2.1.1). Now,

we want to show that for all vh ∈ Wh, the i-th Dof of the empirical operator
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interpolation

IM [Lh(µ)] [vh] =

M∑
i=1

σm(vh)qm (2.29)

can be evaluated by

τi [(IM [Lh(µ)] [vh])] =
∑

j∈N (i)

gIMij (µ; vh) (2.30)

for all vh ∈ Wh with a parametrized �ux gIM (µ; ·) recursively de�ned by

gIMij (µ; vh) := σM (vh)
(
gij
(
µEI
M ;uh(µEI

M )
)
− gIM−1

ij

(
µEI
M ;uh(µEI

M )
))

+ g
IM−1

ij (µ; vh)
(2.31)

for all M > 0 and gI0ij (µ; ·) := 0.

From equation (2.4.3), it follows by induction and with the local conser-

vation property for all parameters that

τi [qM ] = cM ·
∑

j∈N (i)

gij
(
µEIM ;uh(µEIM )

)
− gIM−1

ij

(
µEIM ;uh(µEIM )

)
. (2.32)

Then, from (2.4.4) follows

(IM [Lh(µ)] [vh])i = σMM (vh) (qM )i +
∑

j∈N (i)

g
IM−1

ij (vh) , (2.33)

and such, after substituting (2.4.7) into (2.4.8),

gIMij (vh) = −gIMji (vh) , (2.34)

because g(µ; ·) and gIM−1(µ; ·) are both conservative �uxes by assumption

and by induction, respectively. Therefore, the sum of conservative �uxes

stays conservative. �

Of course, the above lemma stays true for other operator properties be-

having in a somehow linear way. Sometimes, however, these properties do

not apply to all operators Lh(µ) in the parameter domain. In this case,

one can simply generate two sets of collateral reduced basis functions and

interpolation points, one for the parameters on which the property applies,

and one set for the other parameters.

We conclude with a further remark on properties common to all operator

evaluations.

Remark 2.4.3. It is a trivial fact, but noteworthy, that the set of interpolated

operator evaluations ∪µ∈MIM [Lh(µ)] [uh(µ)] is a subset of the convex hull

of the original operators evaluations U := ∪µ∈MLh(µ) [uh(µ)]. Therefore, a

property which applies to all functions of this convex hull conv(U) is preserved
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by the empirical operator interpolation. An example is the global conservation

property stating that discrete functions vh ∈ U have zero mean
∫

Ω vh = 0.

Again, it can happen, that the property is restricted to a subset of the

parameter space, but it might also happen that it apply to a local restriction

of the spatial domain only. The latter case can be observed for �nite volume

operators modeling Dirichlet boundary conditions, for example. Here, it is

preferable to split the operators in two parts Lh(µ) := L1
h(µ) + L2

h(µ), such

that the required property holds for L1
h(µ) for all µ ∈ M. Then, again the

EI-greedy algorithm should be applied to both operators separately leading

to interpolations I1
M1 and I2

M2, such that the required operator property is

conserved locally.



CHAPTER 3

Reduced basis method

In this chapter, we want to develop an e�cient reduced basis scheme

for non�linear parametrized evolution equations. These are problems which

are characterized by a parameter vector µ ∈ M from a set of admissible

parametersM⊂ Rp.
For a �xed µ ∈M the evolution problem consists of solving for functions

u(x; t,µ) on a bounded domain Ω ⊂ Rd and a �nite time interval [0, T ], T >

0, such that

∂tu(t,µ) + L(t,µ) [u(t,µ)] = 0, u(0,µ) = u0(µ), (3.1)

and suitable boundary conditions are satis�ed. Here, u0(µ) are the param-

eter dependent initial values and L(t,µ) is a parameter dependent spatial

di�erential operator. The initial value and the solution are supposed to have

some spatial regularity u0(µ), u(·; t,µ) ∈ W ⊂ L2(Ω).

In the following section, an abstract numerical scheme for the above

problem is introduced, for which a reduced scheme with an o�ine-/online

decomposition is demonstrated in Section 3.2. Furthermore, an example

�nite volume discretization for a general convection di�usion problem is pre-

sented as a basis for the implementation of the test problems used in the

numerical experiments in Chapter 5

The chapter concludes with Section 3.3 on error analysis of the error be-

tween the reduced and the high dimensional solutions, with the proposal of

an a posteriori error estimator, which we �rst published in [25]. Throughout

this chapter, we assume the existence of reduced basis spaces and all neces-

sary empirical interpolation data. The next chapter 4 comprises a detailed

discussion on several ways to generate these magnitudes during the o�ine

phase of the reduced basis method.

3.1. Evolution Scheme

In this section, we de�ne an operator based numerical scheme which can

be understood as an abstract formulation for many modern discretizations

of the parametrized evolution problem (3.0.10).

For the discrete solutions of the analytical problem, a �nite dimen-

sional Hilbert space Wh ⊂ L2(Ω) with a suitable norm ‖·‖Wh
is needed.

19
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Considering a time discretization at parameter independent time instants

0 = t0 < t1 < . . . < tK = T , the evolution scheme produces discrete solution

snapshots ukh(µ) for k = 0, . . . ,K.

The following De�nition 3.1.1 de�nes an operator based numerical scheme

with a �rst order discretization in time and a separation of the di�erential op-

erator into explicit and implicit contributions operating on either the solution

snapshot at the last computed time instant k or the �rst unknown snapshot

at time instant k + 1. Both operator parts may depend in a non�linear

way on the argument, where the non�linear implicit part will be treated

by a Newton�Raphson method. For clarity of exposition, we �x the time

step size to a constant ∆t, but of course, it is possible to choose it problem

dependent.

De�nition 3.1.1 (General parametrized evolution scheme). Let Wh be an

H-dimensional discrete function space with a basis {ψi}Hi=1 and t
k := k∆t, k =

0, . . . ,K be a sequence of K + 1 strictly increasing time instances with a

global time step size ∆t > 0. Furthermore, there needs to exist a projection

Ph : L2(Ω)→Wh onto the discrete function space, and we assume an arbi-

trary space discretization operator Lh := LI +LE decomposed in its implicit

and explicit contributions LI := LI(tk,µ),LE := LE(tk,µ) :Wh →Wh. For

each parameter µ ∈ M we de�ne a numerical scheme for discrete solutions

ukh := ukh(µ) =
∑H

i=1 u
k
h,iψi ∈ Wh at time instances tk for k = 0, . . . ,K by

initial projection

u0
h = Ph [u0(µ)] , (3.2)

and subsequently solving the equations

F
[
uk+1
h

]
:= (Id + ∆tLI)

[
uk+1
h

]
− (Id−∆tLE)

[
ukh

]
= 0, (3.3)

with the Newton�Raphson method. In each Newton step, we solve for the

defect δk+1,ν+1
h in

DF |
uk+1,ν
h

[
δk+1,ν+1
h

]
= −F

[
uk+1,ν
h

]
, (3.4)

where uk+1,0
h := ukh and uk+1,ν+1

h := uk+1,ν
h + δk+1,ν+1

h de�ne the updates in

each Newton step, and the solution at time instance tk+1 is given by uk+1
h :=

u
k+1,νkmax
h . Here, the last Newton step index νkmax equals the smallest integer

ν satisfying the inequality ∥∥∥Rkh,New∥∥∥Wh

≤ εNew (3.5)
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for the Newton residual

Rkh,New := uk+1
h − ukh + ∆t

(
LI
[
uk+1
h

]
+ LE

[
ukh

])
(3.6)

and a prede�ned residual error bound εNew > 0.

Note that, if LI is linear, a single Newton-step is su�cient and in case

LI is zero, we obtain a purely explicit scheme. As a special case, the Crank�

Nicolson scheme of second order is also covered.

3.1.1. Finite volume scheme. In this subsection, example operators

for the numerical scheme from 3.1.1 are introduced, resulting in a �nite

volume scheme. For this, we consider a special instances of the evolution

problem (3.0.10), solving the following scalar nonlinear convection�di�usion

problem on a polygonal domain Ω ⊂ R2 with the abbreviation u = u(t;µ)

for a clearer exposition:

∂tu+∇ · (v(u;µ)u)−∇ · (d(u;µ)∇u) = 0 in Ω× [0, Tmax] (3.7)

with suitable parametrized functions v(·;µ) ∈ C(R,Rd) for the convective

direction and d(·;µ) ∈ C(R,R+
0 ) for the di�usion coe�cient. Furthermore,

we prescribe

u(0;µ) = u0(µ) in Ω× {0}, (3.8)

u(µ) = udir(µ) on Γdir × [0, Tmax],

(3.9)

(v(u;µ)u− d(u;µ)∇u) · n = uneu(µ) on Γneu × [0, Tmax]

(3.10)

and cyclical boundary conditions on the remaining boundary ∂Ω\(Γdir ∪
Γneu). Here, n denotes the outer normal on the boundary. Note, that we

also allow d ≡ 0.

We denote W as the exact solution space with respect to the space vari-

able that can be chosen e.g. as L∞(Ω)∩BV (Ω) ⊂ L2(Ω). We obtain unique

entropy solutions in L∞([0, Tmax];W) if the data and boundary functions

ful�ll adequate regularity conditions. For a discussion on well�posedness,

uniqueness and existence of entropy solutions for these kind of �nite volume

problems, we refer to e.g. [13, 46].

Numerical scheme. Before we formulate the numerical scheme, we must

introduce some notations.

De�nition 3.1.2 (Numerical grid). Let T := {ei}Hi=1 denote a numerical

grid consisting of H disjoint polygonal elements forming a partition of the

domain Ω̄ =
⋃H
i=1 ēi. For each element ei, i = 1, . . . ,H, we assume that there
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exist certain points xi lying inside the element ei, such that all connections of

two of these points in adjacent elements are perpendicular to corresponding

edges. The cell's edges are denoted by eij with j ∈ Nin(i)∪Nneu(i)∪Ndir(i).

Here, the index set Nin(i) comprises cell indices of all elements adjacent to

ei and Nneu(i) and Ndir(i) are enumerations of edges on which a Neumann

respectively a Dirichlet condition is imposed. On each edge eij, we denote

Ω

Γdir

Γneu

xk

xi xj

eij/eji

eik

ei

xik

nij

Figure 3.1.1. Excerpt of a rectangular grid with notations
used in this paper.

the barycenter by xij and the outer unit normal by nij.

De�nition 3.1.3 (Finite volume space). Given a numerical grid T like

in De�nition 3.1.2, on each grid cell ei ∈ T , we de�ne piecewise con-

stant indicator functions ψi := χei , spanning a discrete �nite volume space

Wh := span {ψi}Hi=1. We denote the degrees of freedom of a �nite volume

function uh ∈ Wh by uh,i = τi (uh) := uh(xi). For the time interval dis-

cretization, we choose the global time step size ∆t small enough such that

a Courant�Friedrichs�Lewy (CFL) condition is ful�lled for all parameters

µ ∈M.

The implicit and explicit space discretization operator need to model

the di�usive respectively the convective dynamics of the underlying partial

di�erential equations. Therefore we de�ne

LI(µ) := αLdi�(µ) + β Lconv(µ), (3.11)

LE(µ) := (1− α)Ldi�(µ) + (1− β)Lconv(µ) (3.12)

with constants 0 ≤ α, β ≤ 1 and �nite volume operators Ldi� and Lconv spec-
i�ed below. A judicious choice for the constants is α = 1 and β = 0, because

the greater sti�ness of di�usion dynamics requires implicit discretizations,
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whereas for instationary problems, it is computationally more e�cient to dis-

cretize convection terms explicitly. [30] Note that the operators are constant

in time, but the scheme applies to time�varying operators as well.

The main idea of the �nite volume method is to compute cell�wise aver-

ages over the solutions and to substitute the occurring volume integrals con-

taining divergence terms into surface integrals with the Gauss�Ostrogradsky

theorem, such that e.g.

∇ · ϕ ≈ 1

|ei|

∫
ei

∇ · ϕ =
1

|ei|

∫
∂ei

ϕ · n. (3.13)

For the di�usion operator, a �nite di�erence approximation of the normal

derivative gives us the Dof-wise de�nition

(Ldi�(µ) [uh])i =− 1

|ei|
∑

j∈Nin(i)

d(uh;µ)ij
uh,j − uh,i
|xj − xi|

|eij |

− 1

|ei|
∑

j∈Ndir(i)

d(udir(xij ;µ);µ)
udir(xij ;µ)− uh,i

2|xij − xi|
|eij |,

(3.14)

where |ei| is the volume of the grid cell ei and d(uh;µ)ij computes a suitable

mean on the edge eij . In our experiments, we will mainly use the harmonic

mean

d(uh;µ)ij
harm

:=
2d(uj ;µ)d(ui;µ)

d(uj ;µ) + d(ui;µ)
. (3.15)

In order to resolve the non�linearity of the di�usion in a numerical scheme

with the Newton�Raphson method, we also need the operator's directional

derivative at a point uh ∈ Wh

(DLdi�(µ)|uh [vh])i =− 1

|ei|
∑

j∈Nin(i)

(
Dd(·;µ)ij |uh [vh]

uh,j − uh,i
|xj − xi|

|eij |

+ d(uh;µ)ij
vh,j − vh,i
|xj − xi|

|eij |
)

− 1

|ei|
∑

j∈Ndir(i)

d(udir(xij ;µ);µ)
−vh,i

2|xij − xi|
|eij |.

(3.16)

Likewise, we de�ne the �nite volume operator for the convection term by

(Lconv(µ) [uh])i =
1

|ei|
∑

j∈Nin(i)

gij(uh,i, uh,j ;µ)

+
1

|ei|
∑

j∈Ndir(i)

gij(uh,i, udir(xij);µ)

+
1

|ei|
∑

j∈Nneu(i)

∫
eij

uneu(µ)

(3.17)
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with Engquist-Osher �ux functions gij leading to low numerical viscosity in

this scheme. The �ux functions can be expressed by setting cij(u;µ) :=

nijv(u;µ)u for all edges, de�ning

c+
ij(u;µ) := cij(0;µ) +

∫ u

0
max(c′ij(s;µ), 0)ds, (3.18)

c−ij(u;µ) :=

∫ u

0
min(c′ij(s;µ), 0)ds (3.19)

and choosing the �ux as gij(u, v;µ) := |eij |
{
c+
ij(u;µ) + c−ij(v;µ)

}
, cf. [30,

48]. The corresponding directional derivative w.r.t. vh of the Engquist-Osher

�ux operator is given by

(DLconv(µ)|uh [vh])i =
1

|ei|
∑

j∈Nin(i)

(
∂1gij(uh,i, uh,j ;µ)vh,i

+ ∂2gij(uh,i, uh,j ;µ)vh,j
)

+
1

|ei|
∑

j∈Ndir(i)

∂1gij(uh,i, udir(xij ;µ))vh,i.

(3.20)

In order to complete the scheme, we can project the initial data onto

the discrete function space via a cell averaging operator Ph : W → Wh,

Dof-wise de�ned by (Ph [vh])i := 1
|ei|
∫
ei
vh and obtain a speci�cation of the

generalized numerical scheme from De�nition 3.1.1.

Remark 3.1.4 (Restriction to interpolation DOFs). From the Dof-wise def-

initions of the operators (3.1.13) and (3.1.16), it follows that a constant

number of �ops dependent on the maximum number of cell neighbors su�ces

to numerically compute a single degree of freedom from the operator evalua-

tion result. Therefore, the �nite volume operators ful�ll the H-independent

Dof dependence condition and are suitable for empirical interpolation with

the constant C bounded by one plus the maximum number of edges of an

element.

A crucial property of �nite volume operators is their local conservation

property assuring that everything �owing out of a cell �ows into a neigh-

boring one. For an arbitrary �nite volume (update) operator in the �ux

formulation

(Lh [uh])i =
∑

j∈N (i)

gij(uh). (3.21)

the local conservation property holds, i�

gij(uh) = −gji(uh). (3.22)
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In Lemma 2.4.2, it was already shown, that this property is inherited by the

empirical interpolant of the operator.

As a corollary or from Remark 2.4.3, it also follows that global conser-

vation, i.e. ∫
Ω
Lh[vh] = 0 for all vh ∈ Wh, (3.23)

is preserved under empirical interpolation. In case of trivial boundary con-

ditions, the operators (3.1.13) and (3.1.16) are conservative in this sense for

all µ ∈M.

For non�trivial boundary conditions, however, the operators can be split

into a sum of operators acting on di�erent domains. If, e.g. one of these

addends computes the �uxes over inner edges only, it preserves the global

conservation property under empirical interpolation. (c.f. Remark 2.4.3).

Note, that the interpolation procedure and the reduced scheme are iden-

tically applicable to other evolution problems, discrete function spaces and

discretization operators, e.g. �nite element or discontinuous Galerkin meth-

ods. Hence, for the following development of the reduced basis method, we

will express the numerical scheme in terms of the more general notions from

De�nition 3.1.1.

3.2. Reduced simulation scheme

In this section, we introduce a reduced basis scheme for the evolution

problem from De�nition 3.1.1 and compare the computational complexity of

both schemes. In order to formulate the reduced scheme, the existence of

reduced bases for spaces for a Galerkin projection of the detailed data and

empirical interpolation of the non�linear operators is assumed throughout

the rest of this chapter. In detail, we de�ne

• reduced basis functions {ϕn}Nn=1 ⊂ Wh spanning a reduced basis

space Wred ⊂ Wh and

• empirical interpolation data suitable for both operators, i.e. col-

lateral reduced basis functions {ξm}Mm=1 ⊂ Wh and corresponding

interpolation DOFs ΣM .

The question how to retrieve the above functions and interpolation DOFs

algorithmically, is postponed to the next Chapter 4.

The reduced basis scheme introduced here is based on a similar formula-

tion for explicit discretizations of evolution problems in [39, 37]. We extend

these schemes by allowing non�linear or non�separable implicit operator con-

tributions. The basic idea for the reduced basis scheme is twofold: First, the

discrete evolution operators LE and LI from De�nition 3.1.1 are substituted

by their empirical interpolants IM [LE ] and IM [LI ]. Second, an orthogonal
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projection of the numerical scheme onto the reduced basis space Wred with

respect to the scalar product of Wh is applied.

For this purpose, we introduce the corresponding projection operator

Pred :W →Wred satisfying

〈Pred [u] , ϕ〉Wh
= 〈u, ϕ〉Wh

∀ϕ ∈ Wred

and de�ne reduced variants of the discrete operators

Lred,E := Pred ◦ IM ◦ LE and Lred,I := Pred ◦ IM ◦ LI . (3.24)

For all µ ∈ M, trajectories
{
ukred(µ)

}K
k=0

with snapshots ukred(µ) ∈
Wred can be obtained for k = 0, . . . ,K analogously to the evolution scheme

described in De�nition 3.1.1. The reduced initial data is given by projection

of the initial data

u0
red := u0

red(µ) = Pred [u0(µ)] . (3.25)

Then, for each k = 0, . . . ,K − 1 Newton step solutions are computed

by minimizing the defects δk+1,ν
red := δk+1,ν

red (µ) for ν = 0, . . . , νkmax(µ) which

solve(
Id + ∆tDLred,I

∣∣
uk+1,ν
red

) [
δk+1,ν+1

red

]
= −uk+1,ν

red + ukred∆t
[
Lred,I

[
uk+1,ν

red

]
+ Lred,E

[
ukred

]]
, (3.26)

with uk+1,0
red := ukred, u

k+1,ν+1
red := uk+1,ν

red + δk+1,ν+1
red for ν = 1, . . . , νkmax − 1,

and �nally assigning the reduced solution for the next time step by

uk+1
red := u

k+1,νkmax
red . (3.27)

Here, the �nal Newton iteration index νkmax is the smallest integer such that

the norm of the residual de�ned as

Rkred,New := uk+1
red − ukred + ∆t

(
Lred,I

[
uk+1

red

]
+ Lred,E

[
ukred

])
(3.28)

drops below a given tolerance εNew.

Remark 3.2.1. If the implicit operator LI is linear, a single Newton-step

is su�cient. If LI is zero, no Newton step at all is necessary and the nu-

merical scheme degenerates to the purely explicit one, already discussed in

[39]. Non�linear parabolic problems with �nite element discretizations are

also considered in [33, 8] and [32]. Similar to the empirical operator inter-

polation based approach presented in this work, those reduced basis methods

make use of an empirical interpolation applied to speci�c data functions. In

this case, the interpolation Dofs {τEIm }Mm=1 also de�ne point evaluations at
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�magic points� for which the �H-independent Dof dependence� is trivially ful-

�lled with C = 1. Another approach to deal with non�linearities of low�degree

polynomial form is described in [73, 70, 8] . Therefor, it can also be a good

idea for some problems to approximate the non�linearities by polynomials as

proposed in [32].

For easier analysis of the computational complexity during o�ine and

online phase, we translate the above sketched reduced scheme into a vector-

valued formulation based on the few degrees of freedom of the reduced solu-

tion.

De�nition 3.2.2 (Reduced basis scheme with empirical operator interpola-

tion). We assume a numerical scheme from De�nition 3.1.1 with operators

LE and LI ful�lling an H-independent Dof dependence. Hence, we can as-

sume that an appropriate empirical interpolation operator IM is de�ned by

means of a nodal empirical interpolation basis ξM and an enumerated sub-

set of degrees of freedom ΣM :=
{
τEIm

}M
m=1

⊂ Σh. The collateral reduced

basis space shall be the same for both the operators LE and LI (c.f. Remark
3.2.3). Furthermore, there must be a reduced basis ΦN := {ϕn}Nn=1 avail-

able that spans the reduced basis space Wred ⊂ Wh. We de�ne the following

scheme for sequentially expressing

• the reduced solution ukred(µ) :=
∑N

n=1 a
k
n(µ)ϕn,

• intermediate Newton step solutions uk,νred(µ) :=
∑N

n=1 a
k,ν
n (µ)ϕn and

• Newton step defects δk,νred(µ) :=
∑N

n=1 d
k,ν
n (µ)ϕn

by computing the coe�cient vectors

ak := ak(µ) =
(
ak1(µ), . . . , akN (µ)

)T
,

ak,ν := ak,ν(µ) =
(
ak,ν1 (µ), . . . , ak,νN (µ)

)T
and

dk,ν := dk,ν(µ) =
(
dk,ν1 (µ), . . . , dk,νN (µ)

)T
for k = 0, . . . ,K and ν = 0, . . . , νkmax(µ):

The initial solution vector is simply obtained by projection onto the re-

duced basis space. So, e.g. for an orthonormal basis ΦN the following com-

putation applies:

a0 :=
(
〈u0(µ), ϕ1〉Wh

, . . . , 〈u0(µ), ϕN 〉Wh

)T
. (3.29)
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Then, for each time index k = 0, . . . ,K − 1, we compute Newton iter-

ations by �nding defects dk+1,ν+1 and residuals rk+1,ν+1 solving for ν =

0, . . . , νkmax(µ)− 1 the equations(
Id + ∆tCl′I(t

k,µ)
[
ak+1,ν

]) [
dk+1,ν+1

]
= −ak+1,ν + ak+1,0

−∆tC
(
lI(t

k,µ)
[
ak+1,ν

]
+ lE(tk,µ)

[
ak+1,0

])
,

(3.30)

rk+1,ν+1(µ) := ak+1,ν+1 − ak+1,0

+ ∆tC
(
lI(t

k,µ)
[
ak+1,ν+1

]
+ lE(tk,µ)

[
ak+1,0

]) (3.31)

with updates

ak+1,0 := ak, ak+1,ν+1 := ak+1,ν + dk+1,ν+1,

ak+1 := ak+1,νkmax(µ).
(3.32)

The number of Newton steps νkmax(µ) at each time step is chosen as the small-

est integer ν such that the residual norm drops below the speci�ed tolerance

for the Newton scheme, i.e. for which((
rk+1,ν+1(µ)

)T
Mrk+1,ν+1(µ)

) 1
2

< εNew

holds.

Here, the utilized vectors and matrices are de�ned as

(M)nn′ := 〈ϕn, ϕn′〉Wh
= δnn′ , (3.33)

(C)nm := 〈ξm, ϕn〉Wh
, (3.34)(

l′I
(
tk,µ

) [
ak+1,ν

])
mn

:=

H∑
i=1

∂

∂ψi

(
τEIm ◦ LI(tk,µ)

) [
uk+1,ν

red

]
τi (ϕn) ,

(3.35)(
lI

(
tk,µ

) [
ak+1,ν

])
m

:= τEIm

(
LI(tk,µ)

[
uk+1,ν

red

])
, (3.36)(

lE

(
tk,µ

) [
ak
])

m
:= τEIm

(
LE(tk,µ)

[
ukred

])
(3.37)

for n, n′ = 1, . . . , N and m = 1, . . . ,M .

Remark 3.2.3 (Empirical interpolation of multiple operators). In the re-

duced basis scheme, we only use one collateral reduced basis space and one

set of interpolation DOFs for both the operators LE and LI . This is a feasi-

ble choice, whenever the operators implement similar �dynamics�. Separate

reduced basis spaces would include large redundancies in such scenarios.
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Remark 3.2.4 (Rigorousness). If rigorousness is important to the reduced

basis application, i.e. if the error bound must not underestimate the �true�

error, but theM+M ′�exactness assumption cannot be satis�ed, we could also

use the rigorous bound from (2.3.10). In this case, the constant CWh
ε∗M,M ′

needs to be added as an error contribution in each time step. This approch

has been applied in [8].

Remark 3.2.5 (Output functionals). After computing reduced basis vector{
ak(µ)

}K
k=0

, the reduced solutions can be reconstructed by a linear combina-

tion of the reduced basis vectors as ukred(µ) :=
∑N

n=1 a
k
nϕn. The computation

of the latter, however, is ine�cient as it dependents on the high�dimensional

function space Wh.

If possible, it is preferable to initially de�ne for every µ ∈ M linear

output functionals l(µ) :W ′h for the reduced basis application, such that

skh(µ) := l(µ)
[
ukh(µ)

]
(3.38)

de�nes a low dimensional �output of interest�. In this case, if the output

functional is linear and separable in the parameter, its space dependent parts

can be reduced during the o�ine phase.

3.2.1. Complexity analysis. We now show that the reduced scheme

from De�nition 3.2.2 allows a full o�ine/online decomposition by summariz-

ing the computed data �elds and their theoretical complexity and size. The

ability to pre�compute high�dimensional data in a single o�ine phase, is the

key for e�cient and fast online simulations.

For the initial data projection, we assume a separable form for the ana-

lytical initial data function

u0(µ) =

Q∑
q=1

σq0(µ)uq0 (3.39)

with parameter dependent coe�cient functions σq0 :M→ R and parameter

independent functions uq0 ∈ Wh for q = 1, . . . , Q. In this case the parame-

ter independent projections Pred [uq0] can be pre�computed during the o�ine

phase, and the actual parameter dependent projection is e�ciently com-

putable as

Pred [u0(µ)] =

Q∑
q=1

σq0(µ)Pred [uq0] (3.40)
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with the already known reduced basis functions. It is noteworthy, that for

non�separable initial data, which cannot be written like in (3.2.16), a classi-

cal empirical interpolation can be performed, resulting in an interpolant

IM0 [u0(µ)] =

M0∑
m=1

u0(xm0 )qm0 (3.41)

with �magic points� xm0 ∈ Ω and collateral reduced basis functions qm0 ∈ Wh

for m = 1, . . . ,M0. In this case, during the o�ine phase the projections

Pred [qm0 ] need to be pre�computed, such that the projection is computable

e�ciently as

Pred [u0(µ)] ≈
M0∑
m=1

u0(xm0 )Pred [qm0 ] (3.42)

with complexity O(M). Note, that the latter introduces an empirical inter-

polation error to which the approximation theory from Chapter 2 applies.

In the rest of this thesis, including the numerical experiments, a separability

of the initial data like in (3.2.16) is assumed.

For clarity of exposition, we further assume, that only one common set

of collateral reduced basis functions and interpolation points for both em-

pirically interpolated operators exists. This is certainly correct for schemes

with purely implicit (Lh ≡ LI) or purely explicit operator (Lh ≡ LE) con-
tributions. However, a single set of interpolation data can also be a suitable

choice if the manifolds of operator evaluations do not di�er very much. On

the other hand, the reduced basis scheme is trivially extensible to a method

with two di�erent empirical operator interpolations. In Chapter 5 both cases

are tested.

E�cient evaluations of the operator during the online phase, depend on

• restrictions of the reduced basis functions to {RM [ϕn]}Nn=1 with a

restriction operator

RM :Wh →Wh, uh =

H∑
i=1

τi (uh)ψi 7→
∑
i∈IM

τi (uh)ψi, (3.43)

with a global index set IM := ∪τ∈ΣMIτ . For example, for �nite

volume operators, this local index sets Iτ includes all indices of

Dofs corresponding to neighboring cells of the cell the Dof τ ∈ Σh

is associated to. (c.f. Figure 3.2.1)

• the Gramian matrixC from (3.2.11), whose coe�cient entries (C)nm =

〈ξm, ϕn〉Wh
depend on the nodal collateral reduced basis functions

{ξm}Mm=1 that need to be generated from the functions {qm}Mm=1 in

a further pre-processing step. Note that this �basis transformation�
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is very e�cient because of the special form of the collateral reduced

basis (c.f. Remark 2.1.2).

Remark 3.2.6. In practice, discretization operators, like �nite volume or

�nite element discretization operators are usually grid-based and the degrees

of freedom correspond to distinctive points on the grid cells or its interfaces.

In such case, a subgrid Sh ⊂ Th ⊂ Ω as illustrated in Figure 3.2.1, might be

necessary in order to compute the local operator evaluations and the restric-

tion operator e�ciently without an otherwise needed full grid traversal. In

Section 7.6 the implementation of such a grid is discussed.

local subgrid

xm

Restrict uh to subgrid

xm

Evaluate τEIm (Lh(µ) [uh])

Figure 3.2.1. Illustration of �nite volume operator evalua-
tion on a local subgrid

Due to theH�independent Dof dependence the local operator evaluations

of the restricted basis functions(
τEIm ◦ Lh(tk,µ)

)[ N∑
n=1

anϕn

]
=
(
τEIm ◦ Lh(tk,µ)

)[ N∑
n=1

anRM [ϕn]

]
(3.44)

have a complexity of O(N |IM |) = O(NM) for all m = 1, . . . ,M . This re-

sult can be applied to equations (3.2.13)-(3.3.12) and we observe, that each

of them lies in the complexity class O(NM2). The generation of the Jaco-

bian from equation (3.2.12) depends on O(N2M2) �ops. This outreaches

all other computations for the assembling of reduced matrices and vectors

including matrix-matrix-multiplication of the reduced Jacobian with C con-

suming O(N2M) �ops. Therefore, one Newton step (3.2.7) of the reduced

scheme has complexity O(N2M2 + N3) including the costs for the linear

equation solver. The computation of the Newton residual costs O(NM2).

Unlike in the detailed simulation steps, the left hand side matrix in the lin-

ear equation system is not sparse. Because N is very small compared to

the dimension of the detailed numerical scheme, we still expect the solution

of the equation system to be much faster. We summarize that the reduced
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detailed simulation reduced simulation

Initial data projection Eqn. (3.1.1): O(H) Eqn. (3.2.6): O(QN)

Assembling of opera-
tors and their deriva-
tives in Newton step

Eqn. (3.1.3): O(H) Eqn. (3.2.7): O(N2M2)

Solving Newton step Eqn. (3.1.3): Complexity
depending on linear solver,
approximately O(H2)

Eqn. (3.2.7): O(N3)

Computing residual Eqn. (3.1.5): O(H) Eqn. (3.2.8): O(NM2)

Table 3.2.1. Comparison of theoretical run�time complexi-
ties between detailed and reduced simulations.

scheme is independent of the high dimensional data size H for each parame-

ter after the o�ine-phase. A detailed comparison between costs for detailed

and reduced simulations is given in Table 3.2.1.

3.3. A posteriori error estimator

In order to e�ciently �nd a reduced basis space Wred that approximates

all the requested parametric solutions with a given accuracy, e�cient a pos-

teriori bounds for the error between a reduced and a detailed simulation

are necessary. Therefor, these are a crucial ingredient for the reduced basis

method. For linear problems or polynomially non�linear problems, in which

all data can be separated in space and parameter, there exist a variety of

residual based and rigorous error bounds, e.g. [33, 73, 66, 58, 62]. There

are also results for schemes which use empirical interpolation in order to

generate a separation of parameter dependent functions, e.g. [31, 8, 39].

In this section, we propose a new error estimate for the reduced basis

scheme given in De�nition 3.2.2 which is based on the residual and takes

into account the error contribution of the empirical operator interpolation.

A simple estimator for purely explicit discretization with empirical operator

interpolants has been originally introduced in [39]. Here, like in De�nition

2.3.4, we assume that a higher order empirical operator interpolation of the

used operators is exact. Note, that this assumption is always ful�lled for

M +M ′ = H but for e�ciency reasons in practice a much smaller value for

M ′ is used. In our numerical experiments, we observed that already a small

number of additional collateral reduced basis functions is su�cient to obtain

feasible a posteriori error results. In [31], who suggested this error bound,

even M ′ = 1 is chosen for their numerical experiments.

Theorem 3.3.1. Let
{
ukh(µ)

}K
k=0

and
{
ukred(µ)

}K
k=0

be solution trajectories

obtained via the evolution schemes from De�nitions 3.1.1 and 3.2.2 where

the initial projection onto the reduced basis space is exact, i.e. u0
h(µ) ∈ Wred

for all µ ∈ M. Further, we make two assumptions on the discretization
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operators Id + ∆tLI(µ) and Id − ∆tLE(µ). Firstly, the operators need to

ful�ll a lower respectively an upper Lipschitz continuity condition such that

there exist constants CI,∆t(µ), CE,∆t(µ) > 0, and for all u, v ∈ Wh and all

µ ∈M the inequalities

‖u− v + ∆tLI(µ) [u]−∆tLI(µ) [v]‖Wh
≥ 1

CI,∆t(µ)
‖u− v‖Wh

(3.45)

‖u− v −∆tLE(µ) [u] + ∆tLE(µ) [v]‖Wh
≤ CE,∆t(µ) ‖u− v‖Wh

(3.46)

hold. Secondly, we assume the exactness of the empirical interpolation of the

operators for a certain number of collateral reduced basis functions, i.e. there

exists a positive integer M ′ > 0, such that

IM+M ′ [LI(µ)]
[
ukred(µ)

]
= LI(µ)

[
ukred(µ)

]
and (3.47)

IM+M ′ [LE(µ)]
[
ukred(µ)

]
= LE(µ)

[
ukred(µ)

]
(3.48)

for all k = 0, . . . ,K and µ ∈M.

Then, the norm of the error ek(µ) := ukh(µ) − ukred(µ) can be bounded

for k = 0, . . . ,K by ηkN,M,M ′(µ) which is an e�ciently computable function

de�ned by∥∥∥ek(µ)
∥∥∥
Wh

≤ ηkN,M,M ′(µ) :=

k−1∑
i=0

[
(CI,∆t(µ))k−i+1 (CE,∆t(µ))k−i

·
(∥∥∥∥∥

M+M ′∑
m=M+1

∆tθi+1
m (µ)ξm

∥∥∥∥∥+ εNew +
∥∥∆tRi+1(µ)

∥∥)] (3.49)

with a residual for the error due to the projection on the reduced basis space

∆tRk+1(µ) := (Id + ∆tIM [LI ])
[
uk+1

red (µ)
]

− (Id−∆tIM [LE ])
[
ukred(µ)

] (3.50)

and empirical interpolation coe�cients θk(µ) :=
{
θkm(µ)

}M+M ′

m=1
de�ned by

θkm(µ) := τEIm

(
LI
[
ukred(µ)

]
+ LE

[
uk−1

red (µ)
])
. (3.51)

Proof. For clarity of the exposition, we will discard all parameters µ

in this proof. First, we check that the residual norm
∥∥∆tRk

∥∥
Wh

can be

computed e�ciently, because with De�nitions (3.3.6), (3.2.10)-(3.3.12) and

the empirical interpolation gram matrix X ∈ RM×M de�ned by

(X)mm′ := 〈ξm, ξm′〉 , (3.52)
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it follows that

∆t2
∥∥∥Rk+1

∥∥∥2

Wh

=
〈

∆tRk+1,∆tRk+1
〉

=
(
ak+1 − ak

)T
M
(
ak+1 − ak

)T
+ 2∆t

(
lI

[
ak+1

]
+ lE

[
ak
])T

C
(
ak+1 − ak

)
+ ∆t2

(
lI

[
ak+1

]
+ lE

[
ak
])T

X
(
lI

[
ak+1

]
+ lE

[
ak
])
.

So, the complexity of the residual computations summed over all time steps

k = 1, . . . ,K is O(KN2) +O(KMN) +O(KM2) and thus independent of

H. Also the empirical operator interpolation residuals which is in (3.3.5)

given by
∥∥∥∑M+M ′

m=M+1 ∆tθi+1
m (µ)ξm

∥∥∥
Wh

, can be computed e�ciently as(
l+I

[
ak+1

]
+ l+E

[
ak
])T

X+
(
l+I

[
ak+1

]
+ l+E

[
ak
])

(3.53)

with matrices X+ ∈ RM ′×M ′ and vectors l+I [ak+1], l+E [ak] ∈ RM ′ de�ned by

(X+)mm′ := 〈ξm, ξm′〉 (3.54)(
l+I

[
ak+1

])
m

:= τEIm

(
LI(tk,µ)

[
uk+1,ν

red

])
, (3.55)(

l+E

[
ak
])

m
:= τEIm

(
LE(tk,µ)

[
ukred

])
(3.56)

for m,m′ = 1, . . . ,M ′. So, the computational complexity summed over all

time step instances adds up to O(KM ′2).

Let us now derive the error bound. After each Newton iteration in the

detailed numerical scheme, we obtain the equation

(Id + ∆tLI)
[
uk+1
h

]
= (Id−∆tLE)

[
ukh

]
+Rkh,New (3.57)

with Newton residual
∥∥∥Rkh,New∥∥∥Wh

≤ εNew.
The same can be obtained with (3.3.6) for solutions of the reduced nu-

merical scheme

(Id + ∆tIM [LI ])
[
uk+1

red

]
= (Id−∆tIM [LE ])

[
ukred

]
+ ∆tRk+1. (3.58)

Subtracting (3.3.13) from (3.3.14) leads to

(Id + ∆tLI)
[
uk+1
h

]
− (Id + ∆tIM [LI ])

[
uk+1

red

]
︸ ︷︷ ︸

=:(I)

= (Id−∆tLE)
[
ukh

]
− (Id−∆tIM [LE ])

[
ukred

]
︸ ︷︷ ︸

=:(II)

+Rk+1
h,New −∆tRk+1.

(3.59)
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After adding zeros to each of (I) and (II), these can be decomposed into

terms that can (Ia), (IIa) be estimated with the Lipschitz conditions and are

(Ib), (IIb) e�ciently computable terms, only depending on low dimensional

data

(I) = (Id + ∆tLI)
[
uk+1
h

]
− (Id + ∆tLI)

[
uk+1

red

]
︸ ︷︷ ︸

=:(Ia)

+ (Id + ∆tLI)
[
uk+1

red

]
− (Id + ∆tIM [LI ])

[
uk+1

red

]
,︸ ︷︷ ︸

=:(Ib)

(3.60)

(II) = (Id−∆tLE)
[
ukh

]
− (Id−∆tLE)

[
ukred

]
︸ ︷︷ ︸

=:(IIa)

+ (Id−∆tLE)
[
ukred

]
− (Id−∆tIM [LE ])

[
ukred

]
︸ ︷︷ ︸

=:(IIb)

.
(3.61)

Thereby, we have split the error propagation caused by the projection on

the reduced basis space (Ia), (IIa) from the error contribution through the

empirical interpolation of the explicit and implicit discretization operators

(Ib), (IIb). Substituting the previous equations into (3.3.15), bringing (Ib)

on the right hand side and applying the Lipschitz condition (3.3.1) on it, we

obtain a bound for the error
∥∥ek+1

∥∥
Wh

by∥∥∥ek+1
∥∥∥
Wh

≤ CI,∆t
∥∥∥(Id + ∆tLI)

[
uk+1
h

]
− (Id + ∆tLI)

[
uk+1

red

]∥∥∥
Wh

= CI,∆t

∥∥∥∥ (Id + ∆tIM [LI ])
[
uk+1

red

]
− (Id + ∆tLI)

[
uk+1

red

]
+ (Id−∆tLE)

[
ukh

]
− (Id−∆tLE)

[
ukred

]
+ (Id−∆tLE)

[
ukred

]
− (Id−∆tIM [LE ])

[
ukred

]
+Rk+1

h,New −∆tRk+1

∥∥∥∥
Wh

≤ CI,∆t
(∥∥∥∥∥

M+M ′∑
m=M+1

∆tθk+1
m ξm

∥∥∥∥∥
Wh

+ CE,∆t

∥∥∥ek∥∥∥
Wh

+ εNew +
∥∥∥∆tRk+1

∥∥∥
Wh

)
,

(3.62)

where the last inequality uses the Lipschitz continuity (3.3.2) of LE , the
exactness assumptions (3.3.3) and (3.3.4) on (Ib) respectively (IIb), the

boundedness of the Newton residuals and the de�nition of the empirical
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interpolation coe�cients. Resolving the recursion in (3.3.18) with initial

error
∥∥e0
∥∥
Wh

= 0 results in the proposed error bound. �

Remark 3.3.2. The contribution of the Newton iteration error bound εNew

adds up with the number of time instances. This is not a problem as the

bound can be chosen arbitrarily small. However, especially for problems with

exponential error growth in time (CI,∆t(µ) > 1 for all µ), it is reasonable to

weigh the bound with the time steps size ∆t.

Remark 3.3.3. If an output functional exists for the reduced basis method as

proposed in Remark 3.2.5, we are only interested in the error for the output

of interest

ε̂k(µ) :=
∣∣∣skh(µ)− skred(µ)

∣∣∣ , (3.63)

where the reduced output skred(µ) is given by

skred(µ) := l(µ)
[
ukred(µ)

]
. (3.64)

The error estimate can be simply adapted to this case by

η̂kN,M,M ′(µ) := ‖l(µ)‖W ′h η
k
N,M,M ′(µ) ≥ ε̂k(µ). (3.65)

In several examples, e.g. in [33, 8], it has been demonstrated that estimators

for output functionals can even be further improved by solving a second linear

problem in each time step.

It is obvious, that the error estimator respects an o�ine/online decom-

position. A preliminary for the separation is the construction of a bigger

collateral reduced basis ξM+M ′ , but in the experimental section in Chapter

5, we observe that only few extra basis functions are needed for reasonable

results. The evaluation of the estimator only includes low�dimensional terms

or evaluations of the empirically interpolated operators. For a detailed dis-

cussion on the e�cient evaluation of these quantities, we refer to Section

2.2.

The e�ciency of the a posteriori error bound (3.3.5) depends on a tight

selection of the Lipschitz constants CE,∆t(µ) and CI,∆t(µ). A tight bound,

especially for the implicit constant CI,∆t(µ) is of great importance, because

the estimator grows exponentially, if the implicit lower Lipschitz constant is

greater than one. Otherwise, it ceases over time, when individual snapshots

can approximate the detailed simulation better because of the increasing

smoothness of the solutions over time caused by di�usion. In our experiments

in Chapter 5, we derived very rough constant CI,∆t and CE,∆t, such that

CI,∆t ≤ CI,∆t(µ) and (3.66)

CE,∆t ≥ CE,∆t(µ) (3.67)
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for all µ ∈ M. The computations for these constants for the non�linear

�nite volume operators from Section 3.1.1 can be found in Appendix A.

3.3.1. Computation of Lipschitz constants. Now, we want to dis-

cuss the computation of operator constants, as they are needed by the a

posteriori error bound given in (3.3.5). First, we show how to deal with lin-

ear problems, and how in our non�linear case, they can be derived from the

operator's derivative. We conclude in Section 3.3.1.3 with a discussion on

the e�cient computation of these constants for all parameters in the online

phase of the reduced basis method.

3.3.1.1. Linear operators. The computation of the Lipschitz constants

is straightforward for linear operators. If we assume the operators LI(µ)

and LE(µ) to be linear, and the function space to be a Hilbert space with

a scalar product 〈·, ·〉Wh
, the Lipschitz constants CI,∆t(µ) and CE,∆t(µ)

are given by the spectra of the operators. (e.g. [63]) With abbreviations

L̂I,∆t(µ) := Id + ∆tLI(µ) and L̂E,∆t(µ) := Id − ∆tLE(µ), these operator

spectra are given by

σ
(
L̂I(µ)

)
=

[√
σ−
(
L̂∗I,∆t(µ)L̂I,∆t(µ)

)
,

√
σ+

(
L̂∗I,∆t(µ)L̂I,∆t(µ)

)]
and

(3.68)

σ
(
L̂E(µ)

)
=

[√
σ−
(
L̂∗E,∆t(µ)L̂E,∆t(µ)

)
,

√
σ+

(
L̂∗E,∆t(µ)L̂E,∆t(µ)

)]
,

(3.69)

where σ+(L), σ−(L) denotes the largest respectively the smallest eigenvalue

of a linear operator L and L∗ its adjoint w.r.t. to the scalarproduct 〈·, ·〉Wh
.

Then, the Lipschitz constants are given by

CI,∆t(µ) = σ−
(
L̂∗I,∆t(µ)L̂I,∆t(µ)

)−1/2
and (3.70)

CE,∆t(µ) = σ+

(
L̂∗E,∆t(µ)L̂E,∆t(µ)

)1/2
. (3.71)

Therefor, the constant CI,∆t(µ) is positive if the implicit operator L̂I,∆t(µ)

is regular. Furthermore, we observe for symmetric and positive de�nite op-

erators LI(µ) and LE(µ), i.e. if the spectra of both operators are strictly

positive, that the corresponding Lipschitz constants are less than 1. In this

case, the residuals and empirical interpolation errors at earlier time steps

do not in�uence the error estimator from equation (3.3.5) as much as later

ones, such that a tight error bound even for discretizations over large time

intervals can be computed. For example, for a linear di�usion operator, the

pd�ness of the implicit operator LI(µ) is given.
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3.3.1.2. Non�linear operators. In the non�linear case, a feasible way to

estimate lower respectively upper bounds for the Lipschitz constant for dif-

ferentiable operators Lh is via Taylor expansion, as there exist a θ ∈ [0, 1]

such that

L̂(µ) [uh]− L̂(µ) [vh] = DL̂(µ)|θuh+(1−θ)vh [uh − vh] (3.72)

if the operator is locally di�erentiable in a region comprising uh and vh.

Therefor,

CI,∆t(µ) := sup
k=1,...,K

∥∥∥∥(DLI,∆t(µ)|ukh(µ)

)−1
∥∥∥∥
Wh

and (3.73)

CE,∆t(µ) := sup
k=0,...,K−1

∥∥∥DLE,∆t(µ)|ukh(µ)

∥∥∥
Wh

(3.74)

can be a good approximation of the required constants. Note, that we cannot

expect that these constants ful�ll the conditions (3.3.1) and (3.3.2), as the

inequality is only true for the speci�c arguments
{
ukh(µ)

}K
k=0

instead of any

uh ∈ Wh. These, however, are exactly the arguments, for which the Lipschitz

inequalities are needed in our proof for (3.3.5). So, the error bound is still

correct, and we can even expect to enhance the e�ciency of the bound by

this restriction.

3.3.1.3. E�cient computation of Lipschitz constants. As the computa-

tion of operator spectra is high�dimensional, it should be conducted in the

o�ine phase only.

For parameter dependent operators which can be written in a form

Lh(µ) =

Q∑
q=1

σ(µ)Lqh (3.75)

the successive constraint (SCM) method, as proposed e.g. in [42, 66, 17, 50]

can be applied to e�ciently adapt operators constants. Here, during the

o�ine phase for a selection of adaptively chosen parameters, the Lipschitz

constant are computed exactly. During the online simulation, the constants

for other parameters can be e�ciently derived as a linear combination of the

pre�computed ones by solving a linear problem. Unfortunately, the empirical

operator interpolants cannot be written in a separate form as in (3.3.31), such

that the method cannot be applied. However, in [71], where the SCM is used

in order to e�ciently provide coercivity constants for operators whose sep-

arable form is determined by an �multi�component empirical interpolation�,

it is stated, that the SCM may provide infeasible (in this case negative) coer-

civity constants. Therefor, sparse grid interpolation between pre�computed

operator constants is proposed as an alternative. This concept could, of



3.3. A POSTERIORI ERROR ESTIMATOR 39

course, be transferred to the Lipschitz constants of our a posteriori error

estimator.





CHAPTER 4

Basis generation

In this chapter, we introduce two di�erent methods in order to construct

a low�dimensional linear subspace W of a compact manifold S ⊂ Wh of

discrete functions. In detail, we are interested in the special manifold

S = S(M) :=
{
ukh(µ)

∣∣ µ ∈M, k = 0, . . . ,K
}
⊂ Wh, (4.1)

where ukh(µ) ∈ Wh represent solutions from the general parametrized evo-

lution scheme in De�nition 3.1.1 for parameters µ ∈ M ⊂ Rp from a �nite

dimensional set of parameter vectors.

A subspace ought to minimize the angle between itself and the manifold

S de�ned by

A(S, Ŵ) := sup
u∈S

inf
û∈Ŵ
‖u− û‖Wh

(4.2)

for any linear subspace Ŵ ⊂ Wh.

The optimal choice for a linear N�dimensional subspace of S(M), the

so�called reduced basis space denoted by Wred ⊂ Wh in the following, has

an angle equal to the Kolmogorov N -width of S(M) de�ned by

dN (S,W) := inf
Ŵ⊂W,

dim(Ŵ)=N

A(S, Ŵ). (4.3)

In order to computationally generate the reduced linear subspace, we need

to �discretize� the manifold S by a �nite subset. In the special case of

parametrized solutions yielding S(M), this �nite subset can be identi�ed

with a �nite set of training parametersMtrain ⊂M de�ning training snap-

shots

Strain := S(Mtrain). (4.4)

Here, we introduce the two most popular methods to �nd a reduced basis

space Wred of dimension N � H which approximates the set Strain: proper
orthogonal decomposition (POD) and greedy algorithms. Both methods can

produce reduced basis spaces in a way such that its angle to the training man-

ifold A(Strain,Wred) is close to the Kolmogorov N -width dN (Strain,Wred).

For a discussion of other methods for the computational generation of re-

duced basis spaces we refer to [55].

41
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In Section 4.1 the POD method is shortly summarized, and important

results on convergence and optimality of the results are cited from the lit-

erature. Our focus, however, lies on the greedy approach, as this is compu-

tationally less expensive. This is true, especially for big training parameter

setsMtrain which are needed for our framework. In section 4.2 the general

idea of the greedy algorithm is described with an overview of the most im-

portant general results on this topic. As an example, we revise Algorithm

2.1.1 from chapter 2 and extend it in a way such that it �ts in the general

framework for time�dependent solution snapshots.

In Section 4.2.2, we discuss the POD�greedy algorithm, initially pro-

posed in [38] for the generation of a reduced basis space and empirical inter-

polation of an evolution problem from De�nition 3.1.1. As for the reduced

basis scheme proposed in the previous chapter, both a reduced basis space

and empirical interpolation data have to be generated, we discuss in Section

4.3 the combined generation of these data sequentially and in a synchronized

way, respectively.

The selection of the training setMtrain can have a large impact on the

computational costs and the accuracy of the outcome of the greedy algo-

rithm. Therefor, in our experiments, we use an improvement of the greedy

algorithm introduced in [36, 35], which adaptively improves the selection

of training parameters. Furthermore, it is di�cult to predict both the di-

mension and the accuracy of the generated output. As this in�uences the

computational gain during the online phase, we conclude the chapter with a

discussion on di�erent methods to control the basis space dimensions. Here,

we focus on methods, which compute several reduced bases specialized for

sub�domains of the parameter space [29, 35] or the time domain [24, 21].

4.1. Proper orthogonal decomposition

The proper orthogonal decomposition (POD) method, also known as

Karhunen�Loève expansion or principal component analysis in the litera-

ture, is a means to �nd an optimal approximation space for a set of data

functions. The method has been successfully applied on parametrized prob-

lems, e.g. [45] and non�parametric problems, e.g. [16, 12, 49], where the last

three publications used empirical interpolation in order to deal with non�

linearities.

Given a Hilbert space Wh, a set of functions S :=
{
uk
}K
k=1

⊂ Wh,

N ≤ dim(span S) basis functions {φi}Ni=1 ⊂ Wh can be obtained, that solve
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Algorithm 4.1.1 POD basis generation for N POD modes.

PODN (S :=
{
uk
}K
k=1

)

� Compute a Gramian matrix G ∈ RK×K of the data functions:

(G)ij ← 〈ui, uj〉X
� Apply an SVD or a similar algorithm to compute a decreasing sequence
of eigenvalues λ1 ≥ . . . ≥ λN and corresponding eigenvectors vi, . . . , vN ,
w.r.t. the Euclidian scalar product (·, ·)l2 .

� Project the eigenvectors (z-scores) on the reduced basis:

φi ←
1√
λi

K∑
k=1

viku
k

return reduced basis: {φi}Ni=1

the optimization problem

min
{φi}Ni=1

k∑
i=1

∥∥∥∥∥uk −
N∑
i=1

〈
uk, φi

〉
X
φi

∥∥∥∥∥
2

Wh

,

with 〈φi, φj〉Wh
= δij , for 1 ≤ i, j ≤ N.

(4.5)

In the following, the basis functions {φi}Ni=1 are denoted as POD modes. If

constructed by Algorithm 4.1.1 detailed below, the POD modes carry an

order of signi�cance, as the �rst mode equals the direction of the greatest

variance of all the data functions from S. For further details on the method,

we refer to the monograph [43].

Algorithm 4.1.1 de�nes the method PODN , that we use to compute

the N most signi�cant POD modes of a given set of K data functions. If

applied to the data functions Strain with the Hilbert space X = W, we

retrieve a reduced basis spaceWred. This reduced basis space can be used in

reduced simulations as de�ned in De�nition 3.2.2. Its generation, however,

is very expensive, if the number of training parameters |Mtrain| is large:

For every training parameter high dimensional solution snapshots need to

be computed, and the construction of a large Gramian matrix G and the

computation of this matrix's eigenvalues, can get very ine�cient as well.

Therefor, we introduce the alternative method of �greedy� basis generation

dealing with these drawbacks.

4.2. Greedy algorithm

Greedy algorithms are a strategy to build a reduced basis space for the

manifold S(M) with higher computational e�ciency in comparison to the

aforementioned POD method.
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Algorithm 4.2.1 Greedy basis generation

X-greedy(Mtrain,T, εtol,Υmax )
� Initialize reduced basis of size Υ0:

DΥ0 ← X-InitBasis()
Υ← Υ0

repeat

� Find parameter and time instance of worst approximated snapshot:

(µmax, tmax)← arg max
(µ,t)∈Mtrain×T

X-ErrorEstimate(DΥ,µ, t)

� Extend reduced basis by υ new snapshots:
DΥ+υ ← X-ExtendBasis(DΥ,µmax, tmax)
Υ← Υ + υ

� Compute maximum error on training set:
ε← max

(µ,t)∈Mtrain×T
X-ErrorEstimate(DΥ,µ, t)

until ε ≤ εtol or Υ > Υmax

return reduced basis DΥ and maximum error ε

The general idea is sketched in Algorithm 4.2.1. The set of reduced

basis functions DΥ of size Υ is iteratively enhanced by new basis functions

derived from the training manifold S(Mtrain). The selection of these new

basis functions is controlled by an error estimate which is minimized over a

�nite set of parameters Mtrain ⊂ M and time instances T :=
{
t0, . . . , tK

}
.

We will use this algorithm several times throughout this chapter by specifying

the methods

• X-InitBasis(), initializing the reduced basis,

• X-ErrorEstimate(), estimating the error between high dimen-

sional and reduced snapshots and

• X-ExtendBasis(), adding solution snapshot to the reduced basis

space. The number of added solution snapshots υ can be greater

than 1.

The term reduced snapshots denotes either solution snapshots of a reduced

basis numerical scheme as in De�nition 3.2.2 or the projection of the high

dimensional snapshot on the reduced basis space. In many cases the exact

error between the high dimensional and its reduced snapshot is exactly com-

putable, but of course with a computational complexity on the dimension

H. As the error estimate has to be evaluated for all parameters from the

possibly extensive training set, it is therefore preferable to use e�ciently

computable error estimates like the one proposed in Theorem 3.3.1 which

can be decomposed in o�ine and online computations.

It is noteworthy that the greedy algorithm as de�ned in this chapter

di�ers from those published under the same notion whose objective is to
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approximate a single function by a linear combination of dictionary functions.

For the latter case a thorough theory for convergence and variation results

can be found for example in [68].

Recently, convergence results for Algorithm 4.2.1 have been published in

[7] and [4]. These publications assume a simple specialization of Algorithm

4.2.1 that we want to refer to as BASIC-greedy which is detailed in the fol-

lowing Section 4.2.1. It iteratively generates a set of reduced basis functions

ΦN := {ϕi}Ni=1, and in [4] and it is proven that, for a considered polynomial

or exponential decrease of the Kolmogorov N -width dN (S(M)), the angles

A (S(M), span ΦN ) have the same rate of decay.

4.2.1. BASIC�greedy algorithm. The aforementioned abstract greedy

algorithm can be speci�ed by Algorithm 4.2.1 and the following methods:

First, an initial function is computed by the method BASIC-InitBasis(),

computing the function

ϕ1 := arg max
uh∈S(Mtrain)

‖uh‖Wh
(4.6)

which minimizes the norm over all candidates from the training set. The

extension method BASIC-ExtendBasis({ϕi}Ni=1 ,µ, t
k) simply returns the

new basis function ϕN+1 := uk(µ). For the error estimation the method

BASIC-ErrorEstimate({ϕi}Ni=1 ,µ, t
k) computes and returns an estimate

ηk(µ) ≈ εk(µ) similar to the exact error

εk(µ) := inf
vh∈span {ϕi}Ni=1

∥∥∥uk(µ)− vh
∥∥∥
Wh

. (4.7)

This estimate must produce an optimal selection for the next basis function

ϕN+1 returned by the BASIC-ExtendBasis method in a way such that

inf
vh∈span {ϕi}Ni=1

‖ϕN+1 − vh‖ ≥ γ max
(µ,tk)∈Mtrain×T

εk(µ) (4.8)

for a weakness constant 0 < γ ≤ 1. This requirement (4.2.3) is ful�lled for

e�ective estimates ηk(µ), for which there exist bounds c, C with 0 < c ≤ C

such that

cηk(µ) ≤ εk(µ) ≤ Cηk(µ), k = 0, . . . ,K,µ ∈M. (4.9)

Then, the weakness factor in (4.2.3) is given by γ = c
C . Note, that for

c = C = 1 the estimate is equal to the exact error computation.

Theorem 4.2.1 (Convergence for exponential decay). Assuming the above

described BASIC�greedy algorithm with a weakness constant 0 < γ ≤ 1

and

‖ϕ1‖Wh
≤M (4.10)
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for some M > 0 and an exponential convergence of the Kolmogorov n-width

by an exponential rate at

dn(S(Mtrain),Wh) ≤Me−an
α

(4.11)

for n > 0 and some �xed a, α > 0, then

A (S(Mtrain), span Φn) ≤ CMe−cn
β

(4.12)

for all n > 0, with β = α
1+α and for an arbitrary 0 < θ < 1, given con-

stants c := min {| log θ|, (4q)−αa}, C := max
{
ecN

β
0 , q

1
2

}
, q := d2(γθ)−1e

and N0 := d(8q)α+1e.

Proof. See [4]. �

4.2.2. POD�greedy. The state-of-the-art ansatz for the generation of

reduced bases for evolution problems with greedy algorithms di�ers slightly

from the previously described BASIC�greedy: As the changes in solution

snapshots from one time step to the next are small in many applications,

the POD�greedy algorithm has been introduced in [38] which combines

the strengths of the POD and the greedy basis generation methods. Here, in

each extension step, a POD is performed on the residual between the entire

trajectory
{
ukh(µmax)

}K
k=0

and its projection on the reduced basis space. The

extension method then returns the l most signi�cant modes, where l can be

adapted in each extension, but in our experiments we only used the most

signi�cant mode and �xed l = 1.

Like in the BASIC-greedy algorithm, we assume that the quality of

reduced simulation trajectories
{
ukred(µ)

}K
k=0

which are obtained by the re-

duced numerical scheme introduced in De�nition 3.2.2, can be assessed by a

posteriori error bounds. These error estimates, denoted by ηkN,M,M ′ :M→
R, bound the reduction error

∥∥ukred(µ)− ukh(µ)
∥∥
Wh

for every k = 0, . . . ,K,

di�erent dimensions N and M of the reduced basis respectively the collat-

eral reduced basis space, and an accuracy constant M ′ ≥ 1. Note, that the

proposed estimation method POD-ErrorEstimate returns a cumulative

error independent of the time step argument tk, because we are only inter-

ested in �nding bad approximated trajectories. This fact is import for the

error analysis of the algorithm discussed below. An example of such an error

estimate is given in Theorem 3.3.1. In our experiments, the error estimate

was known to grow monotonically with increasing time steps, which is why

in our implementations, we returned the error estimate for the last time

step tK only. It is important to note, that the reduced simulation and the

error estimate as a consequence of this, depend on the existence of empir-

ical interpolation data. The combined generation of reduced basis spaces
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Algorithm 4.2.2 Methods for the POD�greedy algorithm

POD�InitBasis()

return initial reduced basis functions: {ϕn}N0
n=1

POD�ErrorEstimate({ϕn}Nn=1 ,µ, t
k)

return cumulative error estimate for a �xed M ′ ≥ 1:

ηN,M,M ′(µ) :=

√√√√ K∑
k=0

∆t
(
ηkN,M,M ′(µ)

)2
≥

√√√√ K∑
k=0

∥∥ukred(µ)− ukh(µ)
∥∥2

Wh

POD�ExtendBasis({ϕn}Nn=1 ,µmax, t)
� Compute trajectory {

ukh(µmax)
}K
k=0

with scheme from De�nition 3.2.2
� Compute new basis function with Galerkin projection Pred projecting
onto span {ϕn}Nn=1

ϕN+l ← PODl

({
ukh(µmax)− Pred

[
ukh(µmax)

]}K
k=0

)
return extended reduced basis: {ϕn}N+l

n=1

and empirical interpolation data is discussed in section 4.3. Of course, it is

also possible to use the exact error directly. However, a direct evaluation of

the error depends on a large number of ine�cient computations. Therefore,

more e�cient a posteriori estimators allowing to deal with a large number

of training samples, are preferable.

Details on the POD�greedy algorithm are given in Algorithm 4.2.2. Note,

that it is not speci�ed how the initial basis shall be composed. In order to

ful�ll the requirements of Theorem 3.3.1, the reduced basis given by the span

of the initial reduced basis functions ΦN0 = {ϕn}N0
n=1 should include projec-

tions of the initial values Ph [u0(µ)] for all µ ∈ M. If the initial condition

has a parametric separable form like in (3.2.16), the initial basis functions

should be selected as an orthonormalization of the projections {Ph [uq0]}Q0

q=1.

Otherwise, an empirical interpolation as in (3.2.18) can be performed and

the optimal choice for the initial reduced basis is {qm0 }M0
m=1. Then, for rigor

in the error estimation a term (CI,∆tCE,∆t)
k+1 ε0 should be added, where ε0

bounds the maximum interpolation error

max
µ∈M

∥∥∥∥∥u0(µ)−
M∑
m=1

u0(xm0 )qm0

∥∥∥∥∥
Wh

. (4.13)

See section 2.3 for a discussion on how to compute this bound.

4.2.2.1. Convergence analysis. Recently, in [34], the convergence results

for the BASIC-greedy algorithm have been extended to the POD-greedy
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algorithm as well. As in the case of evolution problems, the accuracy of

projections of entire trajectories needs to be optimized, a di�erent measure

for the angle between the reduced basis space Wred := span ΦN ⊂ Wh and

the manifold S(Mtrain) ⊂ Wh of solution snapshots is de�ned by

APOD(S(Mtrain),Wred)

:= sup

{ukh(µ)}K
k=0
⊂S(Mtrain)

√√√√ K∑
k=0

∆t
∥∥ukh(µ)− Pred

[
ukh(µ)

]∥∥2
. (4.14)

Here, Pred : Wh → Wred denotes the projection operator onto the reduced

basis space. Like for the greedy algorithm without POD compression, the

error estimate must comply with an accuracy constraint: The trajectory

{uh(µ∗)}Kk=1 with parameter

µ∗ := arg max
µ∈Mtrain

ηN,M,M ′(µ) (4.15)

selected by the error estimate as the worst approximated one, may deviate

from the optimal choice only by a factor 0 < γ ≤ 1, such that√√√√ K∑
k=0

∆t
∥∥ukh(µ∗)− Pred

[
ukh(µ∗)

]∥∥2 ≤ γAPOD(S(Mtrain),Wred). (4.16)

Then, it is shown, that the result from Theorem 4.2.1 can be extended to

the POD�greedy algorithm, by proving that exponential convergence of

the Kolmogorov n-width dn(S(Mtrain),Wh) is inherited by the new angle

APOD(S(Mtrain), span Φn).

Theorem 4.2.2 (Exponential convergence of POD�greedy). Assuming

the above described POD�greedy algorithm with a weakness constant 0 <

γ ≤ 1 for the error estimate ηN,M,M ′ and

d0(S(Mtrain),Wh) := max
uh∈S(Mtrain)

‖uh‖Wh
≤M (4.17)

for some M > 0 and an exponential convergence of the Kolmogorov n-width

by an exponential rate at

dn(S(Mtrain),Wh) ≤Me−an
α

(4.18)

for n > 0 and some �xed a, α > 0, then

APOD (S(Mtrain), span ΦN0+n) ≤ CMe−cn
β

(4.19)

for all n > 0, with β = α
1+α and for an arbitrary 0 < θ < 1, given

constants c := min {| log θ|, (4q)−αa}, C := max
{
ecN

β
0

√
T ,
√
qT
}
, q :=

d2(γθ)−1
√
K + 1e2 and N0 := d(8q)α+1e.
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Proof. See [34] with wk := ∆t for k = 0, . . . ,K. As a further modi�-

cation to the original result, we ignored the �rst N0 basis functions in the

convergence, because these need to be selected before all requirements of the

error estimate from Theorem 3.3.1 are ful�lled. �

4.2.3. EI�greedy. The X�greedy Algorithm 4.2.1 can also be spe-

cialized for the generation of the empirical interpolation data, i.e. col-

lateral reduced basis functions QM = {qm}Mm=1 and interpolation Dofs

ΣM =
{
τEIm

}M
m=1

.

Algorithm 4.2.3 Methods for collateral reduced basis generation EI-
greedy

EI-InitBasis()
return empty initial basis: D0 ← {}
EI-ErrorEstimate((QM ,ΣM ) ,µ, tk)
� Compute exact operator evaluation

vh ← Lh(tk,µ)[ukh(µ)]
� Compute interpolation coe�cients

σM (vh) :=
(
σMj (vh)

)M
j=1
∈ RM (4.20)

� by solving the linear equation system

M∑
j=1

σMj (vh)τEIi [qj ] = τEIi [vh] , i = 1, . . . ,M (4.21)

return approximation error:
∥∥∥vh −∑M

j=1 σ
M
j (vh)qj

∥∥∥
Wh

EI-ExtendBasis((QM ,ΣM ) ,µ, tk)
� Compute exact operator evaluation

vh ← Lh(tk,µ)[ukh(µ)]

and interpolation coe�cients σM (vh) as in (4.2.15) and (4.2.16).
� Compute the residual between vh and its current interpolant.

rM ← vh −
M∑
j=1

σMj (vh)qj

� Find interpolation Dof maximizing the residual.

τEIM+1 ← arg sup
τ∈Σh

|τ(rM )|

� Normalize to obtain a new collateral reduced basis function.

qM+1 ← (τEIM+1(rM ))−1 · rM
return extended basis data: DM+1 ←

(
{qm}M+1

m=1 , {τEIm }M+1
m=1

)
The pertinent methods are given in Algorithm 4.2.3 and the resulting

Greedy algorithm, denoted by EI�greedy in the following is almost equiva-

lent to Algorithm 2.1.1 from chapter 2. The only di�erence to the algorithm
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de�ned earlier is the use of the time parameter, as now evaluations of time

dependent operators on solution snapshots derived from an evolution ??

scheme are considered.

4.3. Combined basis generation

As mentioned in the previous section, the error estimate of the POD�

greedy algorithm depends on empirical interpolation data. Naturally, one

would therefor �rst execute Algorithms 4.2.1+2.1.1 for all discrete operators

in the scheme. Afterwards, the required collateral reduced basis and em-

pirical interpolation Dofs can be used to build a reduced basis space with

the POD�greedy algorithm. This approach of subsequently executing two

greedy algorithms, however, has some drawbacks:

(i) There is no e�ciently computable error estimate for the empiri-

cal operator interpolation, i.e. the error estimation method EI�

ErrorEstimate() depends on high dimensional computations for

each parameter and time step tested. This can be very ine�cient

for large parameter setsMtrain, and eats up the computational gain

by the e�cient error estimate in the POD-greedy, later.

(ii) The empirical interpolation bases are generated such that an arti-

�cial interpolation error is reduced for which it is not clear, how

it relates to the error estimates ηkN,M used in the POD�greedy

algorithm. Therefore, it is impossible to determine a priori the op-

timal correlation between the reduced basis space and the collateral

reduced basis space.

(iii) In our experiments, the reduced basis generation can be improved

if the training parameter set Mtrain is adapted during the basis

generation. This allows to begin with a small parameter set and to

reduce the computation time for the basis generation. The POD�

greedy algorithm �nds a good training parameters set, but this

set is unknown at the stage when the collateral reduced basis is

generated. Details on this adaptive parameter sampling are given

in Section 4.4.1.

4.3.1. PODEI-greedy basis generation. In this section we will in-

troduce another greedy algorithm for a synchronized execution of POD

greedy and empirical interpolation basis generation (PODEI). This algo-

rithm is again based on Algorithm 4.2.1 but generates the reduced basis and

the collateral reduced basis spaces in parallel and overcomes the drawbacks of

the subsequent execution of the algorithms EI-greedy and POD�greedy.

The methods for the PODEI�greedy algorithm are sketched in Algorithm
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Algorithm 4.3.1 Methods for the PODEI-greedy algorithm

PODEI-InitBasis()
� Generate small empirical interpolation basis with Msmall ≥M ′:

(QMsmall
,ΣMsmall

)← EI-greedy(Mcoarse
train , 0,Msmall)

� Compute initial reduced basis:

{ϕn}N0
n=0 ← POD-InitBasis()

return initial bases data: D1 ← {ϕn}N0
n=1 ∪ (QMsmall

,ΣMsmall
)

PODEI-ErrorEstimate(DΥ,µ, t
k)

return reduced basis error estimate: ηkN,M,M ′(µ)

PODEI-ExtendBasis(DΥ,µmax, t
k)

Reduced data DΥ comprises DRBN := {ϕn}Nn=1 and DEIM := (QM ,ΣM )
� Extend EI basis:

DEIM+1 ← EI-ExtendBasis(DEIM ,µmax, t
k)

� Extend RB basis:

DRBN+1 ← POD-ExtendBasis(DRBN ,µmax, t
k)

� Discard extended RB if error increases:
if ηkN−1,M−1,M ′(µmax) ≤ max(µ,t)∈Mtrain

ηkN,M,M ′(µ) then

return extended basis data: DΥ+1 ← (DRBN ,DEIM+1)
else

return extended basis data: DΥ+1 ← (DRBN+1,DEIM+1)
end if

4.3.1. A similar approach of a synchronized generation of reduced basis

spaces has recently been published in [71].

Our proposed algorithm uses the error estimates ηkN,M,1 for a greedy

search in the parameter samplesMtrain ⊂ M and attempts to extend both

reduced spaces in each step. Unlike in the POD�ErrorEstimate method, the

time step maximizing the error estimate is of interest here, as we want to add

only this single snapshot to the collateral reduced basis space. In previous

applications of the empirical operator interpolation to non�linear discrete

operators in reduced basis schemes [39, 23], it was observed that numerical

schemes become unstable if the accuracy of the empirical interpolation is

too bad with respect to the accuracy of the reduced basis space. Figure

4.3.1 depicts an exemplary illustration of this e�ect. The error ηN,M,∞ of

the reduced simulation is plotted with varying dimensions of reduced basis

and empirical interpolation data dimension N and M . We observe that

for growing reduced basis size, the error estimate �explodes� at some point,

where the empirical interpolation is to inaccurate. In order to prevent this

behavior during the basis generation, in each extension of the PODEI�

greedy algorithm, it is checked whether the estimated error increased w.r.t
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Figure 4.3.1. Illustration of reduced basis error convergence
with varying dimensionalities N and M .

the last extension step and discard newly computed reduced basis functions

in this case. This leads to an automatic control of the M�N correlation

between the dimensions of the two basis spaces.

A similar approach for this automatic control of the two basis sizes is

presented in [71]. This approach is based on the same idea, but identi�es

so�called EIM plateaus on which the model reduction error is dominated

by the projection error made by the projection on the reduced basis space.

On these EIM plateaus, a further extension of empirical interpolation basis

functions is useless, which is also observable in Figure 4.3.1.

It is noteworthy, that the initial collateral basis is generated by a full EI�

greedy algorithm generating a small initial basis on a coarser parameter

sampling setMcoarse
train . This is necessary, because the error estimate depends

on a larger set of interpolation Dofs and collateral reduced basis functions.

Therefor, the initial collateral reduced basis must be of dimension M ′ at

least.

4.4. Control of error and e�ciency

Greedy algorithm are an e�cient means to �nd good approximation

spaces for a �nite set of functions. In our setting of parametrized evolution

equations, we have to deal with continuous parameter spaces, and there-

for, with an in�nite amount of functions that have to be approximated by

surrogates from a linear function space. In order to apply any of the afore-

mentioned approaches for basis generation, the parameter space needs to be

discretized by a �nite set of parametersMtrain ⊂M. This need of parame-

ter space discretization and the requirement of e�ciency arouses two crucial

problems of the greedy basis generation:
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(i) If the set of training parameters Mtrain comprises too few param-

eters, the greedy algorithm might �over�t� the generated basis on

the training sample, such that

ηN,M,M ′(µ
∗)� max

µ∈Mtrain

ηN,M,M ′(µ) (4.22)

for some µ∗ ∈M\Mtrain.

(ii) Usually, it is thus unknown, how fast the greedy algorithms con-

verge, and such there is not method to predict the needed dimen-

sions of reduced basis spaces in order to get approximations with

the desired error tolerance εtol. Many applications, however, have

constraints on both the error tolerance and the performance of the

simulation implied by the reduced basis dimensions.

In this chapter, we discuss solutions for the above two problems. In order to

deal with (i), [36, 35] propose to adaptively re�ne the set of training param-

eters, if an over�t is detected on the basis of a set of validation parameters.

As this extension of the greedy algorithm is applied on all our numerical

experiments in Chapter 5, we detail it in the following Section 4.4.1.

The control of the reduced simulations e�ciency can be assured by the

generation of specialized approximation spaces for sub�domains of the pa-

rameter space [29, 27, 35] or sub�intervals of the time domain [21, 24]. As

this thesis deals with time dependent evolution problems, we want to focus

on adaptive methods to partition the time domain. Especially for convec-

tion dominant problems, this approach can lead to good results, since a lot

of empirical interpolation Dofs or reduced basis functions are necessary to

capture convective �ows. Exemplarily, in Section 4.4.2, the time�adaptive

generation of empirical operator interpolation data from [24] is presented as

an extension to existing publications in this �eld. This method has been

applied for a simple Buckley�Leverett problem in Section 5.3, where we also

discuss on its practicability. If control of the reduced simulations e�ciency

is important in applications, however, combinations of time and parameter

space partitions might be necessary. The most extensive publication on the

generation of specialized basis space for certain parameter space partitions

is [29]. The authors propose a hierarchical reduced basis method, called hp

certi�ed reduced basis method for a�nely parameter dependent problems.

It is combined with a method to adaptively increases the number of training

parameters in order to prevent over�tting, such that the maximum approxi-

mation error of solutions which are not in the set of training parameters can

be bounded as well.
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4.4.1. Parameter space adaptation. In this section, we want to re-

vise the method proposed in [36, 35] which adaptively re�nes the set of

training parameters. For this, we have to change the abstract greedy algo-

rithm de�ned in Algorithm 4.2.1 by adding a set of validation parameters,

and another termination condition, triggering when the �over�t� equation

(4.4.1) is ful�lled for some µ∗ ∈ Mval. Here, Mval ⊂ M is further (�-

nite) set of randomly selected parameter vectors. If the greedy algorithm

stops early because of a detected �over�t�, the training set of parameters

Mtrain must be re�ned. After the re�nement, the greedy algorithm can be

restarted. Of course, it is possible to reuse the previously generated reduced

basis as a starting point for the new greedy algorithm execution. Algo-

rithms 4.4.1&4.4.2 sketch the above idea in pseudo-code. This extension is

applicable to all of the previously de�ned greedy algorithms, leading to new

versions POD�AdaptiveGreedy, EI�AdaptiveGreedy and PODEI�

AdaptiveGreedy.

Algorithm 4.4.1 Adaptive parameter sampling algorithm

X-AdaptiveGreedy(M0,T, εtol, ρtol,Υmax )
� Initialize reduced basis of size Υ0:

DΥ0 ← X-InitBasis()
� Initialize extension step index

s← 0
repeat

� Compute greedy algorithm for current training set Algorithm 4.4.2

(DΥs+1 , ε)← X-ESgreedy(DΥs ,Ms,T,Mval, εtol, ρtol,Υmax)

if ε ≥ εtol then
� Re�ne training set

Ms+1 ← RefineSampling(Ms,Ds, ε)
s← s+ 1

end if

until ε < εtol or Υs > Υmax

return Final reduced basis: DΥs

The only remaining unknown in the new algorithms is the de�nition of

the re�nement algorithm RefineSampling. We present to possible choices

in the following:

4.4.1.1. Mesh re�nement. In our implementation, we used the approach

proposed in [36], where for all adaptation steps s, the parameter setMs ⊂M
is given by the verticesMs = V (Gs) of a Cartesian mesh Gs in the parameter

space. Each element e ∈ Gs of this mesh can then be associated with an error

function

η̄(e) := max
µ∈V (e)∪{c(e)}

X-ErrorEstimate(DΥs ,µ), (4.23)
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Algorithm 4.4.2 Early�Stopping greedy basis generation

X-ESgreedy(DΥ,Mtrain,T,Mval, εtol, ρtol,Υmax )
repeat

� Find parameter and time instance of worst approximated snapshot:

(µmax, tmax)← arg max
(µ,t)∈Mtrain×T

X-ErrorEstimate(DΥ,µ, t)

� Extend reduced basis by υ new snapshots:
DΥ+υ ← X-ExtendBasis(DΥ,µmax, tmax)
Υ← Υ + υ

� Compute maximum error on training set:

ε← max
(µ,t)∈Mtrain×T

X-ErrorEstimate(DΥ,µ, t)

� Compute maximum validation ratio:

ρ← max
(µ,t)∈Mval×T

X-ErrorEstimate(DΥ,µ, t)/ε

until ε ≤ εtol or ρ ≥ ρtol or Υ > Υmax

return reduced basis DΥ and error ε

where V (e) and c(e) denote the mesh vertices adjacent to the element e

respectively its barycenter. This gives an orientation of where the training

set is too coarse, i.e. where new elements need to be added to the mesh. So

in each adaptation step, a fraction θ ∈ (0, 1] of the mesh elements is chosen

for re�nement, by selecting the ones with the highest error function η(e). In

Cartesian meshes as used in our experiments the re�nement of an element

in a p dimensional mesh leads to 2p congruent child elements.

Since we would like to begin with a very coarse mesh, a variation of the

above element-wise error function is used in our algorithms, given by

η(e) := |e|s(e) +
η̄(e)

ε
, (4.24)

where ε is the maximum error estimate over all vertices of the current mesh,

|e| denotes the size of a mesh element e and s(e) counts the number of re-

�nement steps in which the element e was not re�ned. This penalty enforces

the re�nement of very coarse cells in order to detect all local maxima of the

error.

This re�nement method is used in all our experiments in Section 5. For

each numerical example, we comment on the number of re�nement step and

discuss the automatic selection of parameter samples which are identi�ed to

be very important for the reduced basis approximation.

4.4.1.2. Random re�nement. The construction of a Cartesian mesh for

the parameter space can be infeasible for high dimensional parameter spaces

M (dimension higher than 4 or 5). In those cases, one usually prefers to

select the training parameters randomly in the parameter space. In [29], in
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each re�nement step the number of training parameters is doubled by adding

the same number of new random points. A more directed approach would

be to again take the position of the worst approximated errors in account,

and then use random number generators that generate a �xed number of

new training parameters which have high probability to be in the vicinity of

previously over�tted parameters. For example, random number generators

could generate numbers with Gaussian distribution centered at the parame-

ters with highest error estimates by methods as described in [69].

Algorithm 4.4.3 Time adaptive EI�Greedy algorithm

EI-TimeAdaptive(T, εtol,Mmax )
� Initialize empirical interpolation data:(

QT
MT
,ΣT

MT
; ε
)
← EI�Greedy(Mtrain,T, εtol,Mmax)

if card(T) ≤ 2cmin then

� basis space cannot be split, so extend it with Mmax =∞(
QT
MT
,ΣT

MT
; ε
)
← EI�Greedy(Mtrain,T, εtol,∞)

end if

if ε ≤ εtol then
return empirical interpolation data:

{(
QT
MT
,ΣT

MT

)}
else // if: M > Mmax

� Split time interval T
T1,T2 ← SplitTimeInterval(T,QT

MT ,Σ
T
MT)

� Compute time interval speci�c interpolation data

D1 ← EI�TimeAdaptive(T1, εtol,Mmax)

D2 ← EI�TimeAdaptive(T2, εtol,Mmax)

return Final empirical interpolation data: D1 ∪ D2

end if

4.4.2. Time-adaptive empirical operator interpolation. If the re-

duced simulations need to ful�ll some requirements w.r.t. speed and/or

memory of the conducted computations or the generated solution data, it

is important to control the maximum size of the reduced basis space and

the empirical interpolation data. As most applications also have require-

ments on the accuracy of the simulations, the aforementioned algorithms can

be infeasible, if either the dimension of the generated reduced basis spaces

Wred,WM and the empirical interpolation Dofs ΣM is too high for e�cient

reduced simulations, or the maximum certi�ed reduction error is above the

error tolerance εtol.

The dimensions of the reduced basis spaces and the empirical interpola-

tion Dofs can be reduced by splitting the parameter space or the time inter-

vals for which the reduced spaces are generated into smaller sub�domains.
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However, it is very di�cult or even impossible to predict the required ba-

sis size a priori. Therefore, the correct splitting needs to be carried out

adaptively during the basis generation algorithms.

Exemplarily, we describe a method published in [24] for a time adaptive

generation of empirical interpolation data. The general idea of the so�called

EI-TimeAdaptive algorithm is sketched in Algorithm 4.4.3. It produces a

splitting of the original discretized time domain T :=
{
tk
}K
k=0

into L non�

overlapping sub�domains τ1, . . . , τL ⊂ T such that ∪Ll=1τl = T and τk∩τl = ∅
for all 1 ≤ k, l ≤ L. Each of these sub�domains τl is connected with a tuple(

Qτl
Mτl

,Στl
Mτl

)
(4.25)

of empirical interpolation basis functions and interpolation points. First, the

algorithm executes one of the above de�ned algorithms EI-Greedy or EI-

AdaptiveGreedy in order to generate a tuple on the entire time domain. If

the error tolerance εtol cannot be reached for the requested basis size Mmax,

the time domain is split into two sub�domains, and on each of them, the

time adaptive empirical interpolation greedy algorithm recursively computes

a new splitting. The recursion ends, if either both constraints on the reduced

basis size and the error tolerance are met, or no splitting is possible anymore.

The latter condition is true, if a splitting of some time domain τ would yield

two sub�domains with less than cmin ≥ 1 time steps. So, the constant cmin

controls the minimum dimension of the reduced basis spaces. In Section

5.3, the algorithm is tested for a simple discretization of a Buckley�Leverett

equation. It is shown, that � at the cost of a more expensive o�ine-phase

� the reduced simulation time can be e�ectively reduced in this example.

However, we do not have a guarantee to ful�ll both the accuracy and the

online time constraints, as the latter is bounded by a partitioning with time

domains consisting of one time index only.

4.4.2.1. Splitting of the time interval. The natural choice for the method

call to SplitTimeInterval(T,QT
MT
,ΣT

MT
) divides the given time domain

T = {ti}|T|i=1 at its center c(T) := d|T|/2e into two equally sized intervals

T1 := {ti}c(T)
i=1 and T2 := {ti}|T|i=c(T)+1.

4.4.2.2. Reduced simulations. Of course, the reduced basis scheme from

De�nition 3.2.2 needs a revision if multiple basis spaces are existent. Con-

cerning the time adaptive generation of empirical interpolation data, the

changes are very straight-forward: The EI-TimeAdaptive algorithm, yields

the sub�domains K := {τl}Ll=1 and for each τ ∈ K, a set of empirical basis

functions Qτ
Mτ

with empirical interpolation Dofs Στ
Mτ

. As explained in Re-

mark 2.1.2, a set of nodal base functions ΞτMτ
:= {ξτm}Mτ

m=1 can be generated

out of the set of collateral reduced basis functions as well. During the o�ine
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phase, we then need to compute further Gramian matrices Cτ ∈ RN×M with

components

(Cτ )nm := 〈ξτm, ϕn〉 (4.26)

. Then, the empirical operator interpolations given by Cl(tk,µ) in equa-

tions (3.2.7) and (3.2.8) need to be substituted by the specialized variants

Cτ(tk)l(tk,µ), where τ(tk) maps to the unique time domain τ ∈ K comprising

the time index tk.

4.4.2.3. Di�erences to other adaptive basis generation algorithms. As

mentioned in the introduction of this section, the approach to generate mul-

tiple specialized reduced basis spaces has also been applied to reduced basis

spaces specialized for sub�domains of the time interval [21] and of the pa-

rameter space [29, 27, 35]. The general idea of these algorithms is the same,

as for the aforementioned EI-TimeAdaptive algorithm, but there are some

di�erences: In the time adaptive case [21], (i) the splitting heuristic balances

the error contribution over time instead of simply splitting each domain in

the middle, and (ii) the reduced simulation needs to be extended by projec-

tions of solution snapshots between the di�erent reduced basis spaces on the

boundary of the time intervals.

For parameter space adaptation of parameter spaces with more than

one dimension, the partitioning of the parameter space M ⊂ Rp is more

complex. In [35], the partitioning is represented by a Cartesian mesh, with

cells that can be re�ned into 2p congruent sub�cells, whereas [29, 27] choose

a hierarchical tesselation where on each level of the hierarchy, two tesselation

cells exists, comprising all parameters which are nearest neighbor of either

of two corresponding reference parameters.

Furthermore, [35, 27] introduce a two�step approach in which they fore-

cast the right partition after computing one with less accuracy εtol,1 > εtol.

This increases the o�ine time, as less reduced basis spaces must be discarded.



CHAPTER 5

Numerical experiments

In this chapter, we demonstrate experiments for the presented reduced

basis scheme. We numerically prove the applicability of the reduced basis

scheme from De�nition 3.2.2, compare the basis generation algorithms from

Chapter 4 and analyze the e�ciency of the a posteriori error estimate (3.3.5).

Three main problems are considered that all �t into the setting of exam-

ple (3.1.6)-(3.1.9). The �rst one is a Burgers problem with a purely implicit

discretization and smooth solution snapshots. Preliminary results on this

example without the new a posteriori error estimator and with explicit dis-

cretization have been presented in [37]. The second problem is based on a

nonlinear non�stationary di�usion equation also with a purely implicit dis-

cretization. As initial data function we chose a discontinuous one and, by

the choice of non�linearity, this discontinuity should be preserved over time

for certain parameters. This problem setting was chosen in order to vali-

date, how well the reduced basis method can deal with discontinuities. Such

problems are popular applications for �nite volume methods and considered

to be a di�cult case for Galerkin projection methods like the reduced basis

method.

The third problem can be understood as an intermediate step to the two

phase �ow problem discussed in the next chapter. It also models the �ow of

two phases in a porous medium, but with a �xed velocity �eld, neglecting

the e�ects aroused by capillary pressure. In one dimension, this problem is

known as the Buckley�Leverett equation in literature [6]. The results of this

problem were �rst published in [24] in order to validate the time adaptive

empirical interpolation generation described in Section 4.4.2.

All three problems are of non�linear type, but degenerate into linear ones

for speci�c parameter con�gurations.

All implementation are based on our MATLAB software package RB-

matlab [75, 22], which is further detailed in Chapter 7.

5.1. Burgers equation

In a �rst example, we demonstrate the applicability to a nonlinear con-

vection problem

∂tu−∇ · f(u;µ) = 0 (5.1)

59
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Figure 5.1.1. Illustration of transport for smooth data.
Snapshots at di�erent time instants for (a) µ1 = 1 and (b)
µ1 = 1.5 and (c) µ1 = 2.

with smooth initial data and a single parameter.

We choose Ω = [0, 2] × [0, 1] with purely cyclical boundary conditions

and �x the end time T = 0.3. We prescribe the nonlinear �ux function

f(u;µ) := vuµ1 (5.2)

with exponent µ1 and space� and time�constant velocity �eld

v = (1, 1)T , (5.3)

the initial data is a smooth function

u0(x) =
1

2
(1 + sin(2πx1) sin(2πx2)) (5.4)

for x = (x1, x2)T ∈ Ω.

Overall, we consider the single parameter µ = (µ1) ∈ M := [1, 2] for

the exponent in the �ux of the evolution equation. We choose a 120 × 60

rectangular grid for decomposing Ω and K = 100 time�steps which satis�es

the CFL-condition.

Figure 5.1.1 illustrates the time evolution of the solutions for di�erent pa-

rameters, in particular the initial data which is independent of the parameter

µ1 and the �nal state for µ1 = 1 respectively µ1 = 2. The transition between

linear convection (µ1 = 1) and the nonlinear non�viscous Burgers equation

(µ1 = 2) can nicely be observed. In the latter case shock discontinuities

emerge over time.

O�ine phase. For this model setting, the reduced spaces and the em-

pirical interpolation Dofs are generated by
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(A) subsequent execution of the EI� and the POD-AdaptiveGreedy

algorithms and

(B) the PODEI-AdaptiveGreedy algorithm which combines the gen-

eration of the reduced basis space and the empirical interpolation

data.

All algorithms are de�ned in Chapter 4. In the �rst case (A), the collateral

reduced basis space is extended to its maximum size, i.e. until the reduction

of the interpolation error stagnates due to machine precision and numerical

constraints.

All computations are carried out on the PALMA cluster of the University

of Münster using 24 cores each running at 2.67 GHz. The implementation

of the algorithms makes use of the simple parallelization technique men-

tioned in Remark 2.1.3. For the POD-AdaptiveGreedy and the PODEI-

AdaptiveGreedy algorithms, we also apply the adaptation technique de-

scribed in Section 4.4.1, i.e. we begin with an initial uniform parameter set

M0
train ⊂M and re�ne this set, when indicated by a bad ratio between the

maximum errors over the training parameters and another set of validation

parameters. This algorithm is discussed in Section 4.4.1. In the experiments,

we aim to assure a ratio of ρtol := 1.1. The initial parameter sampling set

M0
train for all three greedy algorithms consists of 26 uniformly distributed

parameters in the parameter space interval [1, 2].

In case (A) the generation of the collateral reduced basis with the EI-

AdaptiveGreedy algorithm takes 36 minutes and terminates with M =

499 basis functions after the tolerance of 10−10 for the interpolation error has

been reached. The computation of the detailed simulations for all parameters

takes only 100 seconds because of parallelization of these computations. The

POD-AdaptiveGreedy algorithm terminates after a bit less than 3 hours

and produces a reduced basis space of dimension Nmax = 249. Note, that

the main part of the o�ine run�time costs, namely the search for new basis

functions, depends linearly on the number of available cores and therefor,

the o�ine time can be controlled by using more processors. It is noteworthy,

that the collateral reduced basis space is generated much faster than the

reduced basis space. This is �rstly because of the expensive POD step that

needs to be computed in every POD-AdaptiveGreedy extension step, and

secondly, because the empirical interpolation errors are computed very fast

after all necessary operator evaluations of detailed simulations have been

cached.

In case (B) the initial collateral reduced basis is generated based on the

coarse training sampleMcoarse
train = {1, 2} including only the external points of
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the parameter domain, and stops after three minutes with Msmall = 20 gen-

erated basis functions. As the PODEI-AdaptiveGreedy algorithm starts

with a very small initial collateral reduced basis, the total o�ine time is

smaller than in case (A) � especially for small reduced basis space dimen-

sions. (c.f. Table 5.1.1) The algorithm stops after 3.27 hours. In both cases,

the initial training setsM0
train are not re�ned.

Next, we analyze the quality of the model order reduction induced by

the reduced basis spaces. Figure 5.1.2(a) shows the growth of the Lebesgue

constant de�ned in (2.3.6) with respect to the increasing collateral reduced

basis size M . It can be clearly seen, that the increase is linear with a max-

imum Lebesgue value of 182. Figure 5.1.2(b)+(c) help to understand how

the empirical interpolation algorithm works. It illustrates the cell midpoints

corresponding to the selected interpolation DOFs ΣM and visualizes the

selection order of the empirical interpolation algorithm by plotting points

selected earlier in darker shades. It is visually comprehensible from the il-

lustration that the algorithm realizes an obvious space compression, because

it recognizes the space symmetry of the solution, such that the selected cell

midpoints are all located in the lower left quarter of the domain. This is

because the EI-ExtendBasis method selects the Dof with the lowest index

in case of several equal maxima.

Online phase. In order to get a notion of the reduced simulations ac-

curacy, in Figure 5.1.3 we illustrate the error convergence for the resulting

reduced simulation scheme. We select a setMtest ⊂M of 100 random values

for µ not used during basis generation and determine the maximum error

max
µ∈Mtest

||ured(µ)− uh(µ)||L∞([0,T ];Wh) (5.5)

between the reduced and the detailed simulations for di�erent dimension-

alities N and M . The resulting maximum error is plotted in logarithmic

scale. Figure 5.1.3(b) nicely shows, how a simultaneous increase of N and

M reveals almost exponential convergence along a selected diagonal of the

plot. This simultaneous increase is important: If M is �xed at a low value,

increase of N over a certain limit can give an error increase induced by in-

correctly approximated operator evaluations. If N is �xed, raising M gives

no error improvement at some point.

The main goal of RB-methods is an accurate approximation under largely

reduced simulation time. To assess these computation times, we determine

the detailed and reduced simulation times over a sample of 100 random

parameters and report the average run-times. These e�ciency results are

summarized in Tables 5.1.1(A)+(B) for di�erent reduced basis sizes and
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Figure 5.1.2. Illustration of (a) growth of Lebesgue con-
stant and (b)+(c) the order of interpolation Dof selection for
the Burgers problem. DOFs corresponding to darker points
are selected �rst.

for (A) a subsequent generation of reduced basis and collateral reduced ba-

sis space and (B) the synchronized generation of both using the PODEI-

AdaptiveGreedy algorithm. In the �rst case the ratio between the di-

mensions for the empirical interpolation and the reduced basis are deter-

mined from the maximum basis sizes 499/249 ≈ 2 at which the algorithms

stopped. Note, that this ratio cannot be assumed to be a good choice for

smaller basis dimensions. In contrast, the M�N correlations in the second

table are taken as inferred from the PODEI-AdaptiveGreedy algorithm

which sequentially expands both reduced basis spaces. It can be nicely ob-

served, that this approach leads to better ratios, i.e. reaches smaller maxi-

mum errors with smaller basis spaces and therefore faster reduced simulation

times. An exception is the second row of the tables with small dimensions

(N,M) = (42, 72). For reduced simulations with small reduced basis spaces,
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Figure 5.1.3. (a) Illustration of reduced basis error con-
vergence with varying dimensionalities N and M . (b) Error
plot for simultaneously increased bases sizes N andM for the
�optimal� ratio visually derived from the landscape (a) and
the error curve derived from the PODEI-AdaptiveGreedy
algorithm (dashed line).

the PODEI-AdaptiveGreedy su�ers from the bad initial collateral re-

duced basis which needs a few extension steps to stabilize.

In general, however, the PODEI-AdaptiveGreedy algorithm �nds a

very good choice for the M�N correlation. This observations is empha-

sized by the Figure 5.1.3(b) comparing the maximum error decrease of the

PODEI-AdaptiveGreedy with an �optimal� error decrease curve manu-

ally derived from the neighboring error landscape plot.
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N M ø-run�time[s] max. error o�ine time[h]

H = 7200 − 90.01 0.00 0
42 83 4.42 1.15 · 10−3 0.96
83 166 6.23 6.03 · 10−5 1.34
125 250 8.99 7.43 · 10−6 1.74
166 333 11.6 8.33 · 10−7 2.23
208 416 15.64 2.47 · 10−7 2.78
249 499 19.56 2.38 · 10−7 3.4
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N M ø-run�time[s] max. error o�ine time[h]

H = 7200 − 90.01 0.00 0
42 72 4.44 1.73 · 10−3 0.54
83 144 6.04 5.74 · 10−5 1.09
125 216 8.37 7.30 · 10−6 1.55
167 288 11.92 7.63 · 10−7 2.08
208 360 15.08 2.31 · 10−7 2.69
233 402 16.48 1.55 · 10−7 3.27

Table 5.1.1. Run�time comparison for detailed simulation
with reduced simulations of varying reduced dimensionali-
ties. The average run�times and maximum errors are ob-
tained over a test sampleMtest ⊂ M of size 100. The max-
imum error

∥∥ukh(µ)− ukred(µ)
∥∥
Wh

is obtained over all tuples
(µ, k) ∈ Mtest × [0, . . . ,K] involving high dimensional error
computations.

It can be seen nicely, that we obtain acceleration factors of 4.7− 20 de-

pending on the dimensionalities of the reduced simulation. The acceleration

factors obtained by the two di�erent basis generation methods hardly di�er.

5.2. Porous Medium Equation

In this section, we consider the porous medium equation given by the

nonlinear di�usion problem

∂tu−m∆uµ1 = 0 in Ω× [0, Tmax], (5.6)

u = c0 + u0 on ∂Ω× [0, Tmax], (5.7)

u(·, 0) = c0 + u0 on Ω× {0} , (5.8)

on a rectangular domain Ω = [0, 1]2. The end time is �xed at Tmax = 1.0.

The initial data function u0 is a �eld of symmetrically arranged bar shaped

concentrations illustrated in Figure 5.2.1(a). This gives us a non�smooth

initial concentration depending on the initial parameter c0.

The parameter vector is chosen as

µ = (µ1,m, c0) ∈M := [1, 5]× [0, 0.01]× [0, 0.2] (5.9)
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Figure 5.2.1. Plot (a) depicts a color shading of the ini-
tial data. Below, isolines of reduced solutions are given at
time instances t = 0.1 and t = 1.0 for di�erent parame-
ter vectors: (b) µ = (1, 0.01, 0.2), (c) µ = (2, 0.01, 0.2), (d)
µ = (4, 0.01, 0.2), (e) µ = (1, 0.01, 0.0) , (f) µ = (2, 0.01, 0.0)
and (g) µ = (4, 0.01, 0.0).

such that for µ1 = 2 we get the isothermal porous medium equation and

for µ1 > 2 a porous medium equation with adiabatic �ow. For µ1 = 1 it

degenerates into the linear heat equation. Note also, that for c0 close to zero,

di�usion outside the bars is turned o� in the non�linear case (µ1 > 1).

This e�ect can be observed in Figure 5.2.1(f)+(g) showing large di�u-

sion e�ects inside the bars with high concentration after short time periods

already, but almost none outside. Furthermore, Figure 5.2.1 clearly illus-

trates the nonlinear e�ects, as the di�usion is larger (more contour lines) in

the bars with high initial concentration. An exception, of course, are the

reduced solutions in the upper row, modeling linear di�usion where the dif-

fusivity stays the same globally. For the discretization, we chose again the

�nite volume scheme from Section 3.1.1 on a 100×100 grid for decomposing
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Ω and K = 80 time steps for the discretization of the time interval [0, 1].

The di�usivity is discretized implicitly, such that its non�linearities are to

be resolved with the Newton�Raphson method. If we make the reasonable

assumption that the domain of the operator LI(µ) as de�ned in Section 3.1.1

stays in the range [0, 1], the operator ful�lls the Lipschitz condition (3.3.1)

for all µ ∈M with CI,∆t = 1. For details on this, we refer to Appendix ??.

5.2.1. O�ine phase. Like in the previous example, we compute the

reduced basis spaces on the PALMA cluster using 24 cores for

(A) subsequent execution of EI- and POD-AdaptiveGreedy algo-

rithms,

(B) the PODEI-AdaptiveGreedy algorithm, and

(C) This time a third run with a variation of (A), but where the �true�

error indicator

η(µ) =
∥∥uKh (µ)− uKred(µ)

∥∥
Wh

instead of the error estimator ηKN,M,M ′(µ) is executed.

With the latter, we want to assess the suitability of the error estimator for

the basis generation. This question is discussed in Section 5.2.3 below.

Again, we apply the adaptation technique described in Section 4.4.1 on

the parameter space. The parameter sampling set for the EI-AdaptiveGreedy

algorithm consists of 120 parameter vectors in order to get a good opera-

tor interpolation needed for reduced basis generation later. The distribu-

tion of training parameters is illustrated in Figure 5.2.2(b). The vertices

of the drawn grid match with the training parameters. For the POD-

AdaptiveGreedy algorithm the same initial parameter setM0
train is cho-

sen, whereas the PODEI-AdaptiveGreedy algorithm starts with 30 train-

ing parameters. The result of the adaptive re�nement procedures is illus-

trated in Figures 5.2.2(a)+(c). The training set in case (A) has been re�ned

once with a �nal number of 209 parameter vectors, and in case (B) where

we started with a coarser grid, has been re�ned three times resulting in a

set of size 305. Furthermore, Figure 5.2.2 shows that parameters which are

often selected for basis extension correlate with the re�ned parts of the grids.

Here, we nicely observe two facts: First, solutions that show a complex evo-

lution over time, are selected more frequently until they are approximated

well enough, and second for parameters with solutions evolving more lin-

ear in time, few or even zero snapshots are su�cient, because these can be

approximated by linear combinations of other basis functions.

In case (A) the empirical interpolation algorithm takes 38.5 minutes until

it reaches the �nal number of 425 basis functions and the computation of
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(a) Parameter selection PODEI-AdaptiveGreedy

(b) Parameter selection EI-Greedy

(c) Parameter selection POD-AdaptiveGreedy

Figure 5.2.2. Illustration of the �nal training parameter
setsMmref

train after (a) mref = 3, (b) mref = 0 and (c) mref = 1
re�nement steps. The vertices match with the parameters in
the training sets and the overlaying bubble plots illustrates
how frequently a parameter is picked for basis extension.

the detailed simulations for all training set parameters takes 4 minutes. The

reduced basis space generation terminates after 2.1 hours and 99 generated

reduced basis functions. It does not reach the targeted error of εtol = 10−4

because after 99 basis extensions no snapshots can be found which reduce
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the maximum error estimate over the training parameter set. Figure 5.2.3(b)

illustrating the decrease of the error estimates during the basis extension

suggest that the reason for the stagnation comes from a bad estimation of the

empirical operator interpolation: The stagnation begins after the re�nement

step which is indicated by the strong peak in the error curve, i.e. when the

current training set di�ers from the one used for the EI-AdaptiveGreedy

algorithm.

In case (B) the synchronized generation of basis functions takes about 4

hours, but reaches the a priori given error tolerance εtol = 10−4. The initial

collateral reduced basis is generated in about two minutes with a coarse

training set Mcoarse
train containing only the extremal points of the parameter

space and after Msmall = 20 basis functions have been generated.

The Lebesgue constant ΛM of the collateral reduced basis space (c.f.

(2.3.6) grows in both cases linearly with a maximum of 153 in case (A) and

203 in case (B).

For details on the o�ine computation times, we refer to Table 5.2.1. The

table nicely shows that for case (B) very reasonable M�N correlations are

inferred from the synchronized basis extension and even a basis of better

quality is produced: Comparing lines with similar maximum errors over the

validation set of 100 parameters, the reduced basis from (B) needs less basis

vectors which have been generated in a shorter o�ine phase. For example,

the maximum error of 3.54 ·10−5 is reached with basis dimensions (N,M) =

(93, 358) which can be generated in 2.72 hours, whereas Table 5.2.1(A) shows

that the worse error of 4.06 · 10−5 needs basis size (N,M) = (99, 425) and a

basis generation time of 3.3 hours.

Figure 5.2.3(a) illustrates how often and how frequently basis functions

are discarded during the execution of the PODEI-AdaptiveGreedy al-

gorithm. 5.2.3(b) compares the error estimation decrease during POD-

AdaptiveGreedy and the PODEI-AdaptiveGreedy extension. The

latter needs more extension steps in order to reach a certain basis space

dimension, because some basis functions are discarded as indicated by the

crossed marks. Note also that both error curves have intermediate peaks

because of the adaptation of the parameter training set. As the maximum

error is computed over the current training parameter set, it grows after such

a re�nement step, when more parameters are added.

5.2.2. Online phase. Figure 5.2.4 shows cross-section plots of detailed

and reduced simulation snapshots of the two worst solutions from a set of

100 randomly chosen solution trajectories. Visually, there are no di�erences

between the dashed curve of the detailed and the solid curve of the reduced
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Figure 5.2.3. Illustration of (a) the extension steps dur-
ing PODEI-AdaptiveGreedy at which reduced basis func-
tions were discarded (marked with a cross) and (b) the error
decrease during basis extension with growing reduced basis
size.

solution snapshots. This indicates that dispersion e�ects arising from the

additional approximation are negligible for this example.

To quantify the reduced simulations quality, we proceed exactly as we

did in the previous section for the Burgers problem. We again pick a test

sampleMtest ⊂M of 100 randomly chosen values from the parameter space,

measure the error ‖uh(µ)− ured(µ)‖L∞([0,Tmax];Wh) for all µ ∈ Mtest and

compare the computation times of detailed and reduced simulations. Results

for di�erent magnitudes of the reduced bases dimensionsM and N are shown
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Figure 5.2.4. Comparison of cross�section plots at x2 = 0.6
between detailed and reduced simulation snapshots for dif-
ferent time instances and parameters with worst and sec-
onds worst error from a random test set of 100 parame-
ters: µworst,1 = (1.349, 7.293 · 10−5, 0.013) and µworst,2 =

(1.737, 5.758 · 10−5, 0.021).

in Table 5.2.1. Note, that the run�times are averaged over the test parameter

set, and actually show a high deviation from this mean by factors up to 10,

because the number of Newton steps that are needed to proceed between

time�steps varies noticeably. For linear problems one Newton step is enough,

whereas up to a maximum of 30 Newton steps for stronger non�linearities,

i.e. µ2 > 1 are necessary. Consequently, the acceleration factors for reduced

simulations with maximum reduced basis dimensions also di�er notably.

5.2.3. A posteriori error estimator. The a posteriori error estimator

(3.3.5) has two main purposes: It should �rst give a tight and rigorous

bound on the real error made through the model order reduction, and second

improve the run�time of basis generation algorithms by providing an e�cient
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17 71 1.57 3.56 · 10−3 1.35
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66 283 3.19 5.88 · 10−5 2.43
83 354 4.07 5.55 · 10−5 2.88
99 425 5.3 4.06 · 10−5 3.3

(B
)
P
O
D
E
I
-

A
d
a
p
t
iv
e
G
r
e
e
d
y
,

η N
,M

,1

N M ø-run�time[s] max. error o�ine time[h]

H = 10000 − 55.38 0.00 0
19 72 1.61 3.01 · 10−3 0.16
37 143 2.07 7.90 · 10−4 0.45
56 215 2.67 1.66 · 10−4 1.01
74 286 3.6 6.36 · 10−5 1.69
93 358 4.83 3.54 · 10−5 2.72
111 429 6.55 1.96 · 10−5 4.02

(C
)
E
I
-
+
P
O
D
-

A
d
a
p
t
iv
e
G
r
e
e
d
y
,

η
=
‖·
‖

N M ø-run�time[s] max. error o�ine time[h]

H = 10000 − 55.38 0.00 0
17 71 1.46 2.97 · 10−3 1.26
33 142 1.83 5.87 · 10−4 1.91
50 213 2.31 1.24 · 10−4 2.64
67 283 3.32 6.30 · 10−5 3.49
83 354 4.06 3.19 · 10−5 4.31
100 425 5.99 1.34 · 10−5 5.64

Table 5.2.1. Run�time comparison for detailed simulation
with reduced simulations of varying reduced dimensionali-
ties. The average run�times and maximum errors are ob-
tained over a test sample Mtest ⊂ M of size 100. The
maximum error

∥∥ukh(µ)− ukred(µ)
∥∥
Wh

is obtained over all
tuples (µ, k) ∈ Mtest × [0, . . . ,K]. Subtable (C) is based
on a reduced basis generated with a �true� error indicator
η(µ) =

∥∥uKh (µ)− uKred(µ)
∥∥
Wh

.

and trust�worthy error indicator. In this section, we evaluate how well both

these tasks are resolved.

In a �rst test, we check the e�ciency of the error estimator

λ(µ) :=
ηKN,M,M ′(µ)∥∥uKh (µ)− uKred(µ)

∥∥
Wh

(5.10)

for a random sample of 100 parameters and di�erent values for the extra

collateral basis functions M ′ used to estimate the interpolation error. We

expect λ(µ) to be greater than one, meaning the estimator is rigorous, i.e.

does not underestimate the real error. On the other hand, it is desirable that

the e�ciency is very close to one.
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Figure 5.2.5. Error bar plot showing mean and standard
deviation of error estimator e�ciency over a sample of 100
random parameters for di�erent values of M ′. The dots indi-
cate the minimum and maximum e�ciency.

Recall our assumption, that a large enough collateral reduced basis allows

interpolated operator evaluations to be almost exact. This gives rise to

assess the empirical operator interpolation error with basis dimension M

by comparing it to the �ner interpolation with basis dimension M + M ′.

One question that needs to be answered empirically here, is whether this

assumption is valid and if yes, how big M ′ needs to be chosen. The results

of our experiments are illustrated in Figure 5.2.5: The plot shows statistical

data of the measured e�ectivities for di�erent error estimators, i.e. di�erent
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Figure 5.2.6. Comparison of estimated error decrease dur-
ing basis generation with (a) POD-AdaptiveGreedy and
(b) PODEI-AdaptiveGreedy algorithm. Di�erent error
indicators are used in order to select the worst approximated
trajectories (c.f. Algorithm 4.2.2). The error indicators vary
in the number of collateral reduced basis functions M ′ used
in order to approximate the empirical interpolation error.
The lower indicator curves depict the error decrease dur-
ing a POD-AdaptiveGreedy with �true� error indicator
η(µ) =

∥∥uKred(µ)− uKh (µ)
∥∥
Wh

.
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values for M ′. We observe that the mean e�ectivity is slightly above 10 for

M ′ = 1 and stabilizes at about 12 for smallM ′ already. The latter gives rise

to our assumption that the empirical interpolation error is well approximated

by a small set of extra basis functions.

As the standard deviation of the error estimator's e�ciency is still in a

reasonable range for the sample parameters in this test, we can expect the

estimator to have a good quali�cation as an error indicator for the POD-

AdaptiveGreedy and the PODEI-AdaptiveGreedy algorithms. This

is con�rmed in further test runs where both algorithms are run several times

with di�erent choices of M ′ in the error indicator for the greedy search. The

result are shown in Figure 5.2.6.

The plots show the maximum error estimates for all parameters from the

training set at each reduced basis extension step during the greedy search

algorithm. Here, the lower black line corresponds to the error curve of the

reference run (C) where the greedy extension algorithm is used with the

�true� error
∥∥uKred(µ)− uKh (µ)

∥∥
Wh

as an indicator. We observe, that, in

general, all plots show an error decrease at a rate similar to the reference

plot. Only the POD-AdaptiveGreedy algorithm makes an exception �

after the last adaptation of the training parameter set at about N = 60.

The reason for this behavior can be the non�adaptive training parameter

set used for the collateral reduced basis space. No matter what value has

been chosen for M ′, the runs show no qualitative deviation. Table 5.2.1

shows that the error reduction obtained with reduced basis spaces generated

with greedy search algorithms based on the error estimator is of comparable

quality to the �optimal� values of Table 5.2.1(C), while the o�ine time is

reduced signi�cantly. The e�ect is especially salient for small basis spaces

generated with the PODEI-AdaptiveGreedy algorithm. All this con�rms

our assumption that the estimator is a valid error indicator for the greedy

search � already with a small number of extra collateral basis functions.

5.3. Example: Buckley�Leverett equation

As a third example, we consider a highly non�linear convection�di�usion

problem, that we use primarily in order to validate the newly proposed time

adaptive empirical interpolation algorithm described in Section 4.4.2.

Again, we want to solve for solutions u = u(x, t;µ) satisfying the equa-

tions (3.1.6)-(3.1.9). Here, we consider a specialization, which can be seen

as a preliminary step to the two phase �ow problem in the next chapter. We

choose a Buckley�Leverett type problem in two space dimensions modeling

two�phase �ow, where the velocity �eld is prescribed. The unknown can be
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interpreted as the concentration of a single �uid, e.g. water. For more details

on two phase �ow models, we refer to the next Chapter 6.

We choose a rectangular domain Ω := [0, 1]2 and Tmax := 1. The initial

data function is given by �xed rectangular concentration function, depending

on one parameter clow > 0 given by

u0(µ) = clow + (1− clow)χ[0.2,0.6]×[0.25,0.75]. (5.11)

Furthermore, we de�ne the velocity vector

v(u;µ) = (0, 1)tf(u;µ) (5.12)

and the di�usion coe�cient

d(u;µ) = KD(s;µ). (5.13)

Here

f(u;µ) =
u3

5
·
(
u3

5

)
+

(1− u)3

3

−1

(5.14)

denotes the fractional �ow rate, and

D(u;µ) =
(1− u)3

3
f(u;µ)p′c(u;µ) (5.15)

is the capillary di�usion for a capillary pressure

pc(u;µ) = u−λ. (5.16)

The variable parameters are chosen as µ := (K, clow, λ) and the parameter

space is given by

M := [1, 2]× [0, 0.1]× [0.1, 0.4]. (5.17)

At the boundary of the domain a Dirichlet condition applies with uNdir
(µ) =

clow.

Like all our numerical examples, the problem is discretized with a stan-

dard �nite volume scheme comprising an explicitly computed Engquist�

Osher �ux for the convective terms and an implicit discretization of the

di�usive terms. The underlying grid is very coarse and has a dimension

of H = 25 × 25 grid cells. The time interval [0, Tmax] is discretized by 60

uniformly distributed time steps.

Figure 5.3.1 illustrates solution snapshots for two di�erent parameters

with di�erent di�usion levels K = 0 respectively K = 2. The cross-section

plots in the last column show the expected behavior of combinations of rar-

efaction waves and smoothed shocks.

5.3.1. O�ine phase. In order to assess the e�ects of the adaptation

algorithms, the reduced basis algorithms are run three times. We always use

the typical subsequent combination of empirical interpolation reduced basis
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Figure 5.3.1. Detailed simulation solution snapshots at
time instants t = 0.0 (�rst column), t = 0.1 (second col-
umn), t = 0.3 (third column) and for di�erent parameters
µ = (0, 0.1, 0.4) (�rst row) and µ = (2, 0.1, 0.4) (second row).
The last column shows the reduced solution on cross-sections
at y = 0.5 for the time instants t = 0 (solid line), t = 0.1
(dotted line), t = 0.3 (dashed line).

.

adaptation no. of bases ø-dim(CRB) o�ine time[h] ø-runtime[s] max. error

no 1 350 1.47 6.79 5.88 · 10−4

yes, cmin = 5 11 223.09 2.08 4.06 5.80 · 10−4

yes, cmin = 1 26 198.42 8.40 3.38 5.75 · 10−4

Table 5.3.1. Comparison of the number of bases, the re-
duced basis sizes averaged over sub-intervals, o�ine time, av-
eraged online reduced simulation times and maximum errors
for non-adaptive and adaptive runs with threshold cmin = 5,
and cmin = 1. The average online run-times and maximum er-
rors are obtained from 20 simulations with randomly selected
parameters µ.

generation. Once we used the EI-Greedy+ POD-AdaptiveGreedy com-

bination and the other two times the EI-TimeAdaptive algorithm for the

generation of the collateral reduced basis, followed by a POD-AdaptiveGreedy

algorithm for the e�cient search for reduced basis functions. Here, we used

two di�erent thresholds cmin = 1, 5, which bound the minimal time inter-

val size from below. The results concerning reduced basis sizes, o�ine and

reduced simulation time, are summarized in Table 5.3.1.

In order to assure that the generated reduced basis leads to equally small

reduction errors for all parameters of the parameter space, the parameter

training set is being adapted with a validation set of randomly chosen pa-

rameters as described in Section 4.4.1. In the test runs, after three re�nement
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steps the training parameter set comprises 255 elements, and the chosen vali-

dation ratio of 1.4 is assured after the maximum error for the training param-

eters has fallen below the targeted level of 5 · 10−4. The target interpolation

error for the empirical interpolation was set to 10−6 in all runs. This error

is reached with an average number of 198 respectively 223 basis functions

in the adaptive cases, and 350 basis functions without adaptation. In the

adaptive runs, the time interval has been decomposed into 11 respectively 26

sub-intervals (c.f. Figure 5.3.2(a)+(b)). Figure 5.3.2(c) illustrates the error

decrease during the generation of the reduced spaces for selected time inter-

vals (dashed lines) for the run with cmin = 1. It can be observed that the

slopes for the error graphs are much steeper than in the non-adaptive case

illustrated with a dashed line. Because of the larger variation of the solu-

tions for larger time steps, however, the basis on the last interval [0.29, 0.30]

still shows the slowest error decrease. Figure 5.3.2(a+b) show that for both

adaptive runs the bases dimensions for all intervals stay signi�cantly below

the non-adaptive basis size of 350.

Thus, we observed that the adaptive search in the time domain can lead

to faster reduced simulations. However, the costs of 26 generated basis spaces

for an average dimension reduction by a factor of approximately 0.56 turned

out to be very expensive. So, the general applicability of the algorithm is

proven, but we suggest to combine the time domain search with a parameter

domain search or a further time domain split in the reduced basis space as

in [21] to obtain a further improvement of the method.
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Figure 5.3.2. Illustration of basis sizes on time intervals
after adaptation with (a) cmin = 1 and (b) cmin = 5. Plot (c)
illustrates the error decrease during generation of bases on
three intervals marked with the same color in plot (a). The
dashed line graph shows the slower decrease for a single basis
without adaptation.





CHAPTER 6

Immiscible two phase �ow in porous media

The reduced basis method has been applied to di�erent problem classes

like stationary, linear problems with a�ne dependence on the parameter

on the one end (e.g. [61, 36]) and lately also to non�linear, non�stationary

systems of partial di�erential equations on the other end (c.f. [10], [15]).

In this chapter, we want to deal with the latter problem class. We apply

the empirical operator interpolation and the reduced basis framework as

developed in the previous chapter to a system of two non�linear coupled

partial di�erential equations, handling the model reduction of the function

spaces for all physical unknowns separately. The equations considered model

the �ow of two immiscible, incompressible �uids in a porous medium. For

example, this can be used in reservoir simulation, in order to simulate the

production of oil in a well.

In section 6.1, we introduce the general model for immiscible, incom-

pressible two phase �ow in porous media and derive the global pressure

formulation from this.

The analysis and modeling of the high�dimensional numerical scheme

is mainly taken from [57]. We used the proposed �nite volume scheme in

order to discretize the two phase �ow equation, as described in Section 6.2.

The scheme comprises two non�linear operators and we show in Section

6.3.1 how they can be empirically interpolated. The reduced basis space

is simply obtained by a proper orthogonal decomposition, because we pass

on a parametrization of the problem in our experiments. In Section 6.3

the reduced scheme derived by a Galerkin projection onto the reduced basis

space and the o�ine/online decomposition of this scheme is described. We

conclude this chapter with experiments for the reduced basis generation and

compare the run�times of high�dimensional and reduced simulations.

6.1. Global pressure formulation

In this section, we introduce the general idea on how to model two phase

�ow in porous media with a system of equations for conservation of mass and

the Darcy �ow of the two phases. Furthermore, we shortly derive the equiv-

alent so�called global pressure formulation which is preferred in numerical

81
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simulations, as the number of unknowns and equations in this formulation

is minimized.

The problem is situated on a bounded spatial domain Ω ⊂ R2 modeling

a porous medium and the time interval [0, Tmax]. The saturation of the two

�uid are denoted by sw, so and measure the ratio by which the two phases

�ll the void space of the porous medium in a point x ∈ Ω.

Thus, they should add up to one

sw + so = 1, (6.1)

Therefor, it su�ces to consider the saturation of the wetting phase s := sw

only. The �ow can be described by a combination of the mass conservation

law and Darcy �ow

∂ (φραsα)

∂t
= ∇ · (ραuα) + qα in Ω× [0, Tmax] (6.2)

uα = −kα
µα

k (∇pα − ρag∇z) in Ω× [0, Tmax] (6.3)

for α = w, o. Here the variables φ, ρα,uα,k, kα, µα, qα and pα denote the

porosity, the �uid density, Darcy's velocity, the absolute permeability, the

relative permeability, viscosity, sources and pressure for each phase. The

constant g models gravitational e�ects. Intrinsically the physics for both

phases are coupled by the capillary pressure which can be expressed as the

pressure di�erence

pc = po − pw. (6.4)

One can empirically determine functions for pc with respect to the saturation

s. These curves can be modeled for example by the Brooks-Corey [5] or the

van Genuchten-Mualem model [72].

The number of equations in (6.1.2)-(6.1.3) can be reduced by adding the

two equations in (6.1.2) for α = o, w resulting in ∂t (φ (so + sw)) = ∂t (φ · 1).

On the right hand side, because of (6.1.1), one obtains

∇ · u = −∂φ
∂t

+
qw
ρw

+
qo
ρo

(6.5)

for a global velocity u := uw + uo. It is noteworthy, that the �true� velocity

�elds uw and uo can be reconstructed from the global velocity, e.g.

uw = f(s)u + k
ko
µo
f(s) (∇(pc(s)) + (ρw − ρo) g∇z) , (6.6)

with fractional �ow rates f = fw := (Mµw)−1kw, fo = (Mµo)
−1ko and the

total mobility M = µ−1
w kw + µ−1

o ko. Corresponding to this global velocity
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�eld, a global pressure is de�ned by

ψ := po +

∫ pc(s)

f
(
p−1
c (ξ)

)
dξ, (6.7)

such that a Darcy �ow relation between the two unknowns can be obtained

by

u = −kλ (∇ψ − (ρwf + ρofo) g∇z) . (6.8)

For the derivation of (6.1.8) the equations s = p−1
c (po − pw) and (6.1.3) have

been used.

Usually one can assume that the porosity of the medium does not change

over time, such that ∂tφ = 0. If we further neglect the gravity (g = 0), we

end up with the following system of equations for the unknowns (s,u, ψ)

φ
∂s

∂t
+∇ · (f(s)u−K(s)∇s) = q1, in Ω× [0, T ], (6.9)

∇ · u = q1 + q2, in Ω× [0, T ], (6.10)

u = −kM(s)∇ψ, in Ω× [0, T ], (6.11)

where the di�usion coe�cient is given by

K : [0, 1]→ R, s 7→ k(s)kw(s)f(s)p′c(s), (6.12)

and the source terms q1 := qw
ρw

and q2 := qo
ρo
, respectively.

In order to close the system (6.1.9-6.1.11), we introduce Neumann bound-

ary conditions ∇s ·n = 0 and ∇ψ ·n = 0 on ∂Ω× [0, T ], prescribe an initial

saturation

s(·, 0) = s0 in Ω (6.13)

and de�ne the global pressure to have zero mean∫
Ω
ψ(x, ·)dx = 0 in Ω× [0, T ], (6.14)

as it is de�ned up to a constant only, otherwise. For the �rst test of a

reduced scheme presented in this work, we refrain from a parametrization of

the problem.

In order to ful�ll the prerequisites of the two�phase problem as it is

stated in [57] , the source terms must be of the form

q1(s) = cq − sq and q2(s) = (1− c)q − (1− s)q (6.15)

modeling injection or production wells, where c ∈ [0, 1] is an injection con-

stant.

For details on the derivation of the global pressure formulation of two�

phase �ow problems, we refer to [18].
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6.2. Finite volume discretization

In this section, we summarize the fully implicit �nite volume scheme

from [57] reformulated in a notation suitable for the model reduction in the

following sections. First, we need to introduce a new admissible mesh on

Ω, on which we can store vector �eld information, and two �nite volume

function spaces de�ned on the grid, respectively its associated skeleton.

De�nition 6.2.1 (Numerical grid). Let T := {ei}Hi=1 denote a numerical

grid consisting of H disjoint and convex control volumes, a family of faces

F with σ ⊂ Ω̄ for all σ ∈ F and a family of control volume centers {xi}Hi=1

with xi ∈ ei for i = 1, . . . ,H. Further properties of the mesh are:

(1) ∪Hi=1ei = Ω̄,

(2) For any face σ ∈ F , we denote by xσ its barycenter, and by m(σ)

its one dimensional Hausdor� measure.

(3) For any e, f ∈ T with e 6= f , either the face measure m(ē ∩ f̄) = 0

or ē ∩ f̄ = σ̄ for a σ ∈ F . The set of neighboring control volumes

is denoted by N (e) :=
{
f ∈ T | m(ē ∩ f̄) 6= 0

}
.

(4) For any cell e ∈ T its boundary is given by a set of faces F(e) ⊂ F ,
i.e. ∂e = ∪σ∈F(e)σ̄.

(5) The connection of two points xi, xj is orthogonal to the face σij :=

ēi∩ ēj and its length is denoted by dij := |xi−xj |. The length of the

connection from xi up to the intersection with the face is denoted

by di,σ.

Furthermore, we de�ne the mesh skeleton by

E := ∪σ∈F σ̄. (6.16)

De�nition 6.2.2 (Function spaces). Given an admissible mesh on Ω, we

de�ne the two discrete Hilbert spacesWTh andWEh . These spaces are spanned
by basis functions {χi}Hi=1 and {χσ}σ∈E which are each constant and equal

to one on one grid control volume and face of the mesh, respectively. The

discrete functions in the �nite volume function spaces are then piecewise

constant, and functions fT ∈ WTh , fE ∈ WEh can be identi�ed by their degrees

of freedom

fTh,i = τTi (fTh ) := fTh (xi) and (6.17)

fEh,σ = τEσ (fEh ) := fEh (xσ), (6.18)
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with the Dof functionals ΣTh := {τi}Hi=1 and ΣEh :=
{
τEσ
}
σ∈E . The spaces are

equipped with scalar products

〈uh, vh〉WTh :=

∫
Ω
uhvh and (6.19)

〈uh, vh〉WEh :=

∫
S
uhvh. (6.20)

Furthermore, we de�ne the projection operator PTh : L2(Ω)→WTh by

τi
(
PTh [u]

)
:=

1

m(ei)

∫
ei

u (6.21)

with m(ei) being the measure of a control volume ei for i = 1, . . . ,H.

Now, in order to discretize equations (6.1.9)-(6.1.11), we de�ne two non�

linear �nite volume operators

Lsh :WTh ×WEh →WTh , (6.22)

Luh :WTh ×WTh →WEh (6.23)

and one linear operator

Lψh :WEh →WTh (6.24)

discretizing the equations (6.1.9)-(6.1.11).

The saturation operator is given Dof�wise by

(Lsh [sh,uh])i =
∑

σ∈E(ei)

gσ(uh, sh)

−
∑

ej∈N (ei)

{K(sh)}ij
m(σij)

dij
(sh,j − sh,i) (6.25)

where

{fh}ij :=
dij

di,σij
fh,i

+
dj ,σij
fh,j

(6.26)

is the harmonic mean on the edge σij and gσ :WEh ×WTh → R is an upwind

�nite volume �ux given as

gσij (uh, sh) :=

uh,σijf(sh,i) if uh,σij > 0

uh,σijf(sh,j) if uh,σij ≤ 0.
(6.27)

The velocity operator is de�ned by

(Luh [sh, ψh])ij = {kM(sh)}σij
m(σij)

dij
(ψh,j − ψh,i) (6.28)
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and the pressure operator by(
Lψh [uh]

)
i

=
∑

σ∈E(ei)

uh,σ. (6.29)

De�nition 6.2.3 (Finite volume scheme for two phase �ow). Given a dis-

cretization of the time interval [0, T ] by a sequence of K+1 strictly increasing

time instances tk := k∆t, k = 0, · · · ,K with a global time step size ∆t > 0,

we are searching for discrete solutions

ukh := (skh,u
k
h, ψ

k
h) ∈ Wh :=WTh ×WEh ×WTh . (6.30)

These are computed by an initial projection(
s0
h,u

0
h, ψ

0
h

)
=
(
PTh [s0], 0, 0

)
(6.31)

and subsequently solving the equation

Lh
[
sk+1
h ,uk+1

h , ψk+1
h

]
= 0 (6.32)

with the Newton�Raphson method. In each Newton step, we solve for the

defect δk+1,ν+1 in

DLh|uk+1,ν
h

[
δk+1,ν+1

]
= −Lh

[
uk+1,ν
h

]
, (6.33)

where

uk+1,0
h := uk and (6.34)

uk+1,ν+1
h := uk+1,ν

h + δk+1,ν+1 (6.35)

de�ne the updates in each Newton step, and the solution at each time instance

tk is given by uk+1
h := u

k+1,νmax(k)
h . The last Newton step index νkmax equals

the smallest integer ν satisfying∥∥∥Lh [uk+1,ν+1
h

]∥∥∥
Ws
h×Wu

h×W
ψ
h×R

≤ εNew. (6.36)

Here, Lh[sk+1
h ,uk+1

h , ψk+1
h ] evaluates to

1

∆t

(
sk+1
h − skh

)
− Lsh

[
sk+1
h ,uk+1

h

]
− PTh [q1]

Luh
[
sk+1
h , ψk+1

h

]
− uk+1

h

Lψh
[
uk+1
h

]
− PTh [q1 + q2]∫

Ω
pk+1
h


, (6.37)

with the row entries corresponding to the discretizations of equations (6.1.9)-

(6.1.11) and (6.1.14) with operators de�ned in (6.2.10), (6.2.13) and (6.2.14),
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and the norm ‖·‖Ws
h×Wu

h×W
ψ
h×R

given by∥∥(sh,uh, ψh, c)
t
∥∥ = ‖sh‖Ws

h
+ ‖uh‖Wu

h
+ ‖ψh‖Wψ

h
+ |c|. (6.38)

6.3. Reduced basis scheme

In this section, we want to show how to reduce the Newton scheme

de�ned in De�nition 6.2.3. This reduced basis scheme is decomposable into

an o�ine phase with computations depending on the high dimension of the

original function space Wh and into an online phase with memory e�cient

and fast reduced simulations. In order to make this decomposition clear,

we �rst de�ne the necessary reduced basis spaces and empirical operator

interpolants. Afterwards, we de�ne the reduced basis scheme and analyze

its computational complexity.

6.3.1. Basis generation. In the following, we assume the existence

of three reduced basis spaces, one for saturation Ws
red ⊂ WTh , one for the

pressure Wψ
red ⊂ WTh and one for the velocity Wu

red ⊂ WEh . These shall be

spanned by reduced bases Φ∗ := {ϕ∗n}N∗n=1 with ∗ = {s,u, ψ}.
Furthermore, the two non�linear operators need to be substituted by

empirical interpolants. Therefor, we assume the existence of two empirical

interpolations IsMs
and IuMu

for the empirical operator interpolation of the

non�linear operators Lsh and Luh . The pressure operator Lsh does not need to

be interpolated, as it is linear in ψ.

As we forgo parametrization in this problem, the reduced basis spaces

shall be obtained by a POD of the �snapshots� sk,νh ,uk,νh and ψk,νh for all

(k, ν) ∈ T, where

T := {(k, ν) ∈ 0, . . . ,K × N+ | ν ≤ νmax} . (6.39)

Hence, the entire trajectory of solution snapshots and the intermediate so-

lutions generated by the Newton method are taken into account for basis

generation. With the PODN algorithm de�ned in Algorithm 4.1.1, the re-

duced bases are given by

Φ∗N∗ := PODN∗

({
∗k,νh | (k, ν) ∈ T

})
(6.40)

for ∗ = s,u, ψ. Here the bases sizes Ns, Nu and Nψ are selected, such that

the smallest eigenvalue λN∗ selected in the POD algorithm, is the only one

below a given tolerance εPODtol .

The empirical interpolation data for the two operators is obtained by the

EI-greedy algorithm as described in Algorithm 4.2.3. Note, however, that

the operators in our case are not parametrized, such that as for the greedy

algorithms, only the time steps and intermediate Newton steps are used for
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training of the empirical interpolation. For example, for the operator Lsh(µ),

the training is done with operator evaluations{
Lsh
[
sk,νh ,uk,νh

]}
(k,ν)∈T

. (6.41)

The resulting collateral reduced bases and empirical interpolation Dofs shall

be denoted by

ξsMs
:= {ξm}Ms

m=1 , ξuMu
:= {ξm}Mu

m=1 ,

Σs
Ms

:=
{
τEIs,m

}Ms

m=1
⊂ ΣTh , Σu

Mu
:=
{
τEIu,m

}Mu

m=1
⊂ ΣEh.

(6.42)

6.3.2. Reduced scheme. The derivation of the reduced basis scheme

is now straight�forward. With the help of reduced basis spaces de�ned above,

we can generate the reduced operator

Lred :Ws
red ×Wu

red ×Wψ
red →Ws

red ×Wu
red ×Wψ

red × R. (6.43)

The numerical scheme in De�nition 6.2.3 can then be reduced by searching

for reduced solutions

ured :=
(
skred,u

k
red, ψ

k
red

)
∈ Ws

red ×Wu
red ×Wψ

red (6.44)

for which in each time instance the residual of the reduced operator evalua-

tion

Lred[sk+1
red ,u

k+1
red , ψ

k+1
red ] (6.45)

gets minimized. This operator is de�ned similar to its high�dimensional

counterpart in (6.2.22) by

1

∆t

(
sk+1

red − skred

)
− Lsred

[
sk+1

red ,u
k+1
red

]
− PTred[q1]

Lured

[
sk+1

red , ψ
k+1
red

]
− uk+1

red

Lψred

[
uk+1

red

]
− PTred [q1 + q2]∫

Ω
pk+1

red


, (6.46)

where the operators Lsh,Luh and Lψh are replaced by reduced surrogates de-

�ned as

Lsred := Psred ◦ IMs [Lsh] , (6.47)

Lured := Pu
red ◦ IMu [Luh ] and (6.48)

Lψred := Pψred ◦ L
ψ
h (6.49)

with orthogonal projection operators Psred :Ws
h →Ws

red, P
ψ
red :Wψ

h →W
ψ
red

and Pu
red :Wu

h →Wu
red.
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For easier analysis of the computational costs during o�ine and online�

phase, we want to formulate the above sketched scheme in a vector�valued

form based on the few degrees of freedom of the reduced solutions.

De�nition 6.3.1 (Reduced two�phase �ow scheme). We assume a numeri-

cal scheme as de�ned in De�nition 6.2.3 with operators Lsh and Luh ful�lling

an H�independent Dof dependence and two empirical interpolation operators

IsMs
and IuMu

with associated collateral reduced bases ξsMs
, ξuMµ

and empirical

interpolation Dofs Σs
Ms

and Σu
Mu

. Furthermore, there are three orthonormal

reduced bases Φ∗N∗ with ∗ = s,u, ψ.

Then, we de�ne the following numerical scheme, for sequentially express-

ing

• the reduced solutions

skred =

Ns∑
n=1

aknϕ
s
n, ukred =

Nu∑
n=1

bknϕ
u
n, ψkred =

Nψ∑
n=1

cknϕ
ψ
n , (6.50)

• the intermediate Newton step solutions

sk,νred =

Ns∑
n=1

ak,νn ϕsn, ukred =

Nu∑
n=1

bk,νn ϕu
n, ψkred =

Nψ∑
n=1

ck,νn ϕψn , (6.51)

• and the Newton step defects

Ns∑
n=1

ãk,νn ϕsn,

Nu∑
n=1

b̃k,νn ϕu
n,

Nψ∑
n=1

c̃k,νn ϕψn (6.52)

by computing the coe�cient vectors

ak :=
(
akn

)Ns
n=1

, bk :=
(
bkn

)Nu

n=1
, ck :=

(
ckn

)Nψ
n=1

, (6.53)

ak,ν :=
(
ak,νn

)Ns
n=1

, bk,ν :=
(
bk,νn

)Nu

n=1
, ck,ν :=

(
ck,νn

)Nψ
n=1

, (6.54)

ãk,ν :=
(
ãk,νn

)Ns
n=1

, b̃k,ν :=
(
b̃k,νn

)Nu

n=1
, c̃k,ν :=

(
c̃k,νn

)Nψ
n=1

, (6.55)

for (k, ν) ∈ T.

The initial vector is simply obtained by projection onto the reduced basis

spaces. As all bases are orthonormal, the following applies:

a0 :=
(
〈s0, ϕ

s
1〉Ws

h
, . . . ,

〈
s0, ϕ

s
Ns

〉
Ws
h

)t
(6.56)

b0 := 0 c0 := 0. (6.57)

Then, for each time index k = 0, . . . ,K − 1, we compute Newton iterations

by �nding the defects (ãk,ν , b̃k,ν , c̃k,ν)t and solving for ν = 0, . . . , νmax(k)−1
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the equation

ãk+1,ν+1 + ∆tJ
(
ak+1,ν ,bk+1,ν , ck+1,ν

) [
ãk+1,ν+1, b̃k+1,ν+1, c̃k+1,ν+1

]
= −Rk

(
ak+1,ν ,bk+1,ν , ck+1,ν

)
(6.58)

and computing the residual

Rk+1,ν+1 := Rk
(
ak+1,ν ,bk+1,ν , ck+1,ν

)
(6.59)

with updates

∗k+1,0 := ∗k, ∗k+1,ν+1 := ∗k+1,ν + ∗̃k+1,ν+1, (6.60)

∗k+1 := ∗k+1,νmax(k), (6.61)

for ∗ = a,b, c. The number of Newton steps νmax(k) in each time step is

chosen as the smallest integer ν., such that the residual norm drops below

the speci�ed tolerance for the Newton scheme, i.e.∥∥∥Rk+1,ν+1
∥∥∥ ≤ εNew. (6.62)

Here, the right hand side vector Rk(a,b, c) ∈ RN , N := Ns + Nu + Nψ

is de�ned by 
a− ak + Csls (a,b)− zs

Culu (a, c)− b

Lψb− zψ

(iψ)tc

 (6.63)

and the Jacobian J(a,b, c) ∈ RN+1×N is de�ned by
Csls,s (a,b) Csls,u (a,b) 0

Culu,s (a, c) −Id Culu,ψ (a, c)

0 Lψ 0

0 0 (iψ)t

 . (6.64)

The matrices and vectors in the above equations can be splits into o�ine and

online components. During the o�ine phase, the matrices Cs ∈ RNs×Ms,

Cu ∈ RNu×Mu , Lψ ∈ RNu×Nψ , and the vectors zs ∈ RNs, zψ ∈ Rψ iψ ∈ RNψ
need to be computed, each component�wise de�ned by

(Cs)n,m := 〈ξsm, ϕsn〉Ws
h
, (6.65)

(Cu)n,m := 〈ξum, ϕu
n〉Wu

h
, (6.66)(

Lψ
)
nn′

:=
〈
ϕu
n′ ,
[
ϕψn

]〉
Wu
h

, (6.67)

(zs)n := 〈q1, ϕ
s
n〉Ws

h
, (6.68)(

zψ
)
n

:=
〈
q1 + q2, ϕ

ψ
n

〉
Wψ
h

(6.69)
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and (
iψ
)
n

:=

∫
Ω
ϕψn . (6.70)

In (6.3.29), the jump operator [·] :WTh →WEh given by [uh]σij := uh,i − uh,j
for all σij ∈ F is used. It measures the jump of a �nite volume function over

the mesh faces.

During the online�phase, the Dof�wise operator evaluations l∗ ∈ RM∗ for
∗ = s,u, ls,∗ ∈ RMs×N∗ for ∗ = s,u and lu,∗ ∈ RMu×N∗ for ∗ = s, ψ, need to

be computed. They are Dof�wise de�ned by

(ls (a,b))m := τEIs,m

(
Lsh

[
Ns∑
i=1

aiϕ
s
i ,

Nu∑
i=1

biϕ
u
i

])
, (6.71)

(lu (a, c))m := τEIs,m

(
Luh

[
Ns∑
i=1

aiϕ
s
i ,

Nu∑
i=1

ciϕ
ψ
i

])
, (6.72)

(ls,s (a,b))mn :=

H∑
j=1

∂

∂χsj
τEIs,m

(
Lsh

[
Ns∑
i=1

aiϕ
s
i ,

Nu∑
i=1

biϕ
u
i

])
τj(ϕ

s
n), (6.73)

(ls,u (a,b))mn :=
∑
σ∈E

∂

∂χu
σ

τEIs,m

(
Lsh

[
Ns∑
i=1

aiϕ
s
i ,

Nu∑
i=1

biϕ
u
i

])
τσ(ϕu

n), (6.74)

(lu,s (a, c))mn :=
H∑
j=1

∂

∂χsj
τEIu,m

Luh
 Ns∑
i=1

aiϕ
s
i ,

Nψ∑
i=1

ciϕ
ψ
i

 τj(ϕ
s
n), (6.75)

(
lu,ψ (a, c)

)
mn

:=
H∑
j=1

∂

∂χψj
τEIu,m

Luh
 Ns∑
i=1

aiϕ
s
i ,

Nψ∑
i=1

ciϕ
ψ
i

 τj(ϕ
ψ
n). (6.76)

We refer to Chapter 2 for a discussion on why all these coe�cients can be

computed e�ciently at constant cost O(1).

(6.3.27) (6.3.28) (6.3.29) (6.3.30) (6.3.31),(6.3.32)
O(NsMsH) O(MuNuH) O(NuNψH) O(NsH) O(NψH)

Table 6.3.1. Costs of o�ine matrix computations

The costs for pre�computing the o�ine matrices (6.3.27)�(6.3.32) are

summarized in Table 6.3.1.

The assembling of the residual (6.3.21) has complexityO(NsMs+NuMu+

NψNu) which is assumed to be signi�cantly more e�cient than the detailed

operator evaluation (6.2.22) of complexity O(H). The assembling of the

Jacobian (6.3.26) has complexity O(Ns(Ns + Nu)Ms + Nu(Ns + Nψ)Mu +

NψNu). In this respect, the reduced scheme might struggle to compete with

its detailed counterpart, where the Jacobian assembly still takes O(H), but
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Figure 6.4.1. Plots of chosen data functions: (a) kw(s), ko(s),
(b) f(s), M(s), (c) pc(s) and (d) K(s).

with a larger constant factor. However, the most costly computations in the

detailed scheme is the solution of the linear equation system, which adds up

to O(N3) for the reduced scheme and in the detailed scheme O(H3) in case

of Gaussian elimination or O(HNiter) for an iterative solver with a maximum

number of iterations Niter.

6.4. Numerical experiments

In our experiments with the reduced basis method for the two�phase �ow

problem (6.1.9)-(6.1.11), we use similar data functions like in [57]:

k = 1,

kw(s) =
s3

12
, ko(s) =

(1− s)3

3
,

M(s) = kw(s) + knw(s), f(s) =
kw(s)

M(s)
and

pc(s) = −0.5

√
1− s
s

.

(6.77)

Some of the above data functions are depicted in Figure 6.4.1. Here, es-

pecially the di�usivity, the fractional �ow and the mobility functions are

interesting in order to understand the non�linear behavior of the equation.
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Figure 6.4.2. Illustration of saturation concentration, and
contour plot of pressure �eld with velocity �ux at time in-
stances (a) t = 0.25 and (b) t = 0.5. The snapshots are
reconstructed from a reduced simulation.

The source and sink terms (6.1.15) are given as characteristic functions

on circles B(x̂, r) :=
{
x ∈ R2| ‖x− x̂‖ ≤ r

}
by

q = 10 1B((0.5,0.8),0.01) + 20 1B((0.2,0.2),0.01)

q = 30 1B((0.8,0.5),0.01)

and the injection constant c = 0.8. The initial saturation is set to 0.5 on the

entire domain Ω := [0, 1]2. The �nal time T is set to 0.5.

6.4.1. Discretization. For the �nite volume discretization a rectangu-

lar mesh with 400 control volumes and a time step length of ∆t = 0.01

is used. Solution snapshots reconstructed from reduced simulations of the

three unknowns at t = 0.25 and t = 0.5 are depicted in Figure 6.4.2. We

observe non�linear �ow from the two sources at the top and the lower left of

the domain to the sink on the right.

6.4.2. Reduced basis method. After computing the trajectory of so-

lution snapshots with the scheme described in De�nition 6.2.3, a POD is

applied to compute the three reduced bases Φs,Φu and Φψ. Discarding all

POD modes with eigenvectors less than εPODtol := 10−6, the resulting basis

sizes are Ns = 28, Nu = 72 and Nψ = 34.

The empirical interpolation basis and interpolation points for the non�

linear operators Lsh and Luh are derived with the EI-greedy algorithm for

εtol = 10−8 resulting in basis sizes Ms = 387 and Mu = 386. The error

convergence and the selected interpolation points are illustrated in Figures
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(Ns, Nu, Nψ) (Ms,Mu) ‖sh − sred‖ ‖ψh − ψred‖ time

(28,72,34) (387,386) 6.2 · 10−5 4.11 · 10−4 30.15
(28,72,34) (75,75) 1.03 · 10−4 2.11 · 10−3 21.56
(28,72,34) (75,125) 7.59 · 10−5 8.69 · 10−4 20.61
(28,72,34) (125,125) 8.31 · 10−5 8.26 · 10−4 21.37
(23,58,28) (75,125) 2.47 · 10−4 2.55 · 10−3 18.24

Table 6.4.1. Error and timings of reduced simulations with
di�erent basis sizes.

6.4.3. We observe that the EI-greedy chooses the interpolation Dofs at dif-

ferent grid cells for the two operators resulting in two substantially di�erent

sub�grids. Both empirical interpolation algorithm show an exponential con-

vergence. Table 6.4.1 illustrates the reduced simulation computation time

and the L2(Ω) error between high dimensional and reduced discrete solutions

for saturation and pressure. As the computation time of a high dimensional

simulation is about 52 seconds, the computational gain is about 2.5. We

observe that the empirical interpolation basis is oversized, as a reduced sim-

ulation with basis sizes (Ms,Mu) = (75, 125) achieves similarly good results

as with all basis vectors. So, a combined generation of basis space as pro-

posed in Algorithm 4.3.1 for scalar equations, is desirable in the future.

(a) EI Error decrease

0 100 200 300

10−6

10−4

10−2

100

Basis size: M

‖L
h
−
I M

[L
h
]‖

Lsh
Luh

(b) EI Dof selection

Figure 6.4.3. (a) Illustration of error convergence of EI-
greedy algorithm for operators Lsh and Luh . (b) Illustration
of selected interpolation DOFs for operators Lsh (control vol-
umes) and Luh (�uxes over faces). Darker shades of marked
control volumes and longer arrows represent earlier selected
DOFs.



CHAPTER 7

Abstract software framework

In this chapter, we derive and de�ne an abstract software concept, which

can be used to e�ciently implement a reduced basis scheme based on exist-

ing software code for numerical solvers of high��delity problems. It includes

the entire execution cycle of the reduced basis method, including basis gen-

eration, o�ine-/ online decomposition and rapid reduced simulations with

e�cient error estimates.

The key properties of the software concept shall be the following:

(1) hardly intrusive extension: It shall be possible to rapidly extend

a programmer's favorite code of a solver for parametrized partial

di�erential equations, such that it can be used as a reduced basis

scheme.

(2) software decomposition: High�dimensional computations and low�

dimensional computations can be separated from each other, such

that they can be executed on di�erent computer architectures.

(3) reduced basis library: The entire reduced basis machinery as de-

scribed in the previous chapters shall be integrated.

The �rst property is the most important one: The necessary changes to

an existing numerical solver code should be hardly intrusive. It is notewor-

thy, that during the o�ine phase at least access to the system matrices is

necessary. Therefor, a non�intrusive black�box approach, where the code of

the underlying high�dimensional scheme does not need to be changed, is in

most cases impossible to realize. Especially commercial software packages

often regard matrices and data functions to be private and do not allow to

hand it over to the user. In open source software solutions, however, exist-

ing implementations can be adapted. Reduced basis methods for the open

source software libmesh, e.g., have already been implemented in [47].

The second point deals with the fact, that the hardware and development

requirements for high�dimensional and low�dimensional computations di�er

signi�cantly. On the one hand, high�dimensional numerical solvers often de-

mand high performance, parallel hardware architectures, and therefor often

have a code base developed in C++ and Fortran. On the other hand, the re-

duced computations can be implemented on less demanding hardware devices

95
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which provide higher mobility and less development e�ort. For example, in

[41] a reduced basis application running on smartphones is introduced.

The outline of this chapter is as follows: We �rst want to analyze the

general demands of a reduced basis software. For this, we �rst introduce

a simple example for a general stationary partial di�erential equation in

Section 7.1. This serves as a useful base for the identi�cation and exempli�-

cation of the core reduced basis method components, because it is liberated

from most technical peculiarities. Afterwards, we describe the functional-

ity of the software package RBmatlab which was originally developed by

Bernard Haasdonk. All numerical examples in this thesis are developed with

this Matlab based software, and such, we want to use it as a basis for our

general software concept introduced in Section 7.3. We want to exemplify

this concept by the means of another C++ based software package, called

dune-rb. In Section 7.4 the functionality of dune-rb is described and we

discuss which parts of our software concept it implements. We conclude with

a proof of concept by running the entire reduced basis method execution cycle

on a simple Poisson problem in Section 7.5 and by a discussion on imple-

mentational extensions which are necessary for the handling of non�linear

problems in Section 7.6.

7.1. Stationary reduced basis scheme

Although the goal of this chapter is to describe an abstract framework

for all kind of reduced basis problems, on occasion, we want to refer to a

simple linear example. For a clearer exposition, we omit technical di�culties

like non�linear operators and time dependence. In this section, we de�ne

a parametrized problem based on a stationary partial di�erential equation.

Implementation details for the handling of non�linear operators with empir-

ical operator interpolation are commented on in Section 7.6.

In this section, we de�ne the abstract high�dimension discretization

scheme, together with its corresponding reduced basis scheme and a pos-

teriori error estimate. Based on these de�nitions, a proof of concept for the

abstract framework is given in Section ?? for a �nite volume discretization

of a parametrized elliptic partial di�erential equation.

De�nition 7.1.1 (Analytical problem formulation). Given a Hilbert space

W, a parameter spaceM⊂ Rp of dimension p, for each parameter µ ∈M,

we want to solve for solutions u(µ) ∈ W, such that

L(µ) [u(µ)] = b(µ), (7.1)

with a linear, regular di�erentiable operator L(µ) : W → W and a function

b(µ) ∈ W.
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In order to discretize the above problem, we restrict the Hilbert space

W to a discrete space Wh ⊂ W of dimension H.

De�nition 7.1.2 (Numerical scheme). Given a discrete Hilbert spaceWh :=

span {ψi}Hi=1 ⊂ W spanned by basis functions ψi, i = 1, . . . ,H, and a pro-

jection operator Ph :W →Wh, for each parameter µ ∈M, we want to solve

for discrete solutions uh(µ) ∈ Wh, such that

Lh(µ) [uh(µ)] = bh(µ), (7.2)

with a linear discrete operator Lh(µ) :Wh →Wh approximating the analyt-

ical one Lh ≈ L|Wh
and projected functions bh(µ) := Ph ◦ b(µ).

We also de�ne matrix representations Lh(µ) ∈ RH×H and bh(µ) ∈ RH ,
such that �nding uh(µ) ∈ RH , with

Lh(µ)
[
uh(µ)

]
= bh(µ) (7.3)

is equivalent to (7.1.2) via uh(µ) =
∑H

i=1 u
i
h(µ)ψi. Here uih(µ) denotes the

i-th component of the Dof vector of uh(µ).

Now, if we substitute the discrete function space by a reduced oneWred ⊂
Wh of dimension N � H, we can obtain the reduced scheme via

De�nition 7.1.3 (Reduced basis scheme). We assume a reduced basis space

Wred := span {ϕn}Nn=1 ⊂ Wh with an orthonormal basis Φ := {ϕn}Nn=1 w.r.t.

to the scalar product 〈·, ·〉Wh
and a Galerkin projection Pred : Wh → Wred

satisfying

〈Pred[u], v〉Wh
= 〈u, v〉Wh

for all v ∈ Wred (7.4)

for all u ∈ Wh. Then, for each parameter µ ∈ M, we want to solve for

reduced solutions ured(µ) ∈ Wred, such that

Lred(µ) [ured(µ)] = bred(µ) (7.5)

with projections Lred(µ) := Pred ◦ Lh(µ) and bred := Pred ◦ bh(µ). The

corresponding matrices Lred(µ) ∈ RN×N and bred(µ) ∈ RN can be computed

by

Lred(µ) :=
(
Lh(µ)Φ

)t
WΦ and (7.6)

bred(µ) :=
(
bh(µ)

)t
WΦ, (7.7)

with a reduced basis matrix Φ ∈ RH×N with column matrices set to the Dofs

of the reduced basis functions ϕn and a weighting matrix W ∈ RH×H such

that

utWv = 〈u, v〉Wh
for all u, v ∈ Wh. (7.8)

Furthermore, an error estimate for the reduction error in the norm ‖·‖Wh

can be easily obtained just like in [38].



98 7. ABSTRACT SOFTWARE FRAMEWORK

Lemma 7.1.4 (Error estimate). We want to bound the approximation error

between solutions uh(µ) ∈ Wh of the scheme from De�nition 7.1.2 and re-

duced solutions ured(µ) ∈ Wred from De�nition 7.1.3. If, for every µ ∈ M
there is a constant C(µ) > 0 with∥∥∥(Lh(µ))−1

∥∥∥
Wh

≤ C(µ), (7.9)

the approximation error can be bounded by

‖uh(µ)− ured(µ)‖Wh
≤ η(µ) := C(µ) ‖R(µ)‖ (7.10)

with the residual

R(µ) := Lh(µ) [ured(µ)]− bh. (7.11)

Proof. With e(µ) := uh(µ)−ured(µ) from the linearity of the operators

Lh(µ), it follows that

Lh(µ) [e(µ)] = Lh(µ) [uh(µ)]− Lh(µ) [ured(µ)]

= Lh(µ) [uh(µ)]− bh(µ)︸ ︷︷ ︸
=0

+R(µ). (7.12)

Thus, (7.1.9) leads to the proposition

‖e(µ)‖Wh
=
∥∥∥(Lh(µ))−1

∥∥∥
Wh

‖R(µ)‖Wh
≤ C(µ) ‖R(µ)‖Wh

. (7.13)

�

In order to obtain an e�cient o�ine-/online decomposition, we want to

assume that the operators Lh(µ) and the functions bh(µ) are separable in

the parameter, i.e. there exist decompositions

Lh(µ) =

QL∑
q=1

σL(µ)Lqh and (7.14)

bh(µ) =

Qb∑
q=1

σb(µ)bqh. (7.15)

with coe�cient functions σL, σb : M → R, linear operators Lqh : Wh →
Wh, q = 1, . . . , QL and functions bqh ∈ Wh, q = 1, . . . , Qb. In this case the

required parameter dependent reduced matrices and vectors can be obtained

by a linear combination of parameter independent reduced matrices and

vectors. We want to summarize this o�ine-/online decomposition in the

following by the next de�nition and lemma.
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De�nition 7.1.5 (O�ine-Phase). During the o�ine phase for the scheme,

the following reduced matrices and vectors need to be computed:

Lqred :=
(
LqhΦ

)t
WΦ for q = 1, . . . , QL, (7.16)

bqred := (bqh)tWΦ for q = 1, . . . , Qb, (7.17)

Kq,q′red :=
(
LqhΦ

)t
WLq′h Φ for q, q′ = 1, . . . , QL, (7.18)

mq,q′
red :=

(
LqhΦ

)t
Wbq

′
h for q = 1, . . . , QL, q

′ = 1, . . . , Qb and (7.19)

nq,q
′

red := (bqh)tWbq
′
h for q, q′ = 1, . . . , Qb. (7.20)

The dimensions of all these matrices depend on the dimension of the reduced

basis space N .

Lemma 7.1.6 (Online-Phase). Given the matrices from De�nition 7.1.5, the

parameter dependent reduced matrices and vectors can be e�ciently computed

for all µ ∈M as

Lred(µ) =

QL∑
q=1

σqL(µ)Lqred, (7.21)

bred(µ) =

Qb∑
q=1

σqb (µ)bqred, (7.22)

Kred(µ) :=

QL∑
q,q′=1

σqL(µ)σq
′
L (µ)Kq,q′red , (7.23)

mred(µ) :=

QL∑
q=1

Qb∑
q′=1

σqL(µ)σq
′
b (µ)mq,q′

red and (7.24)

nred(µ) :=

Qb∑
q,q′=1

σqb (µ)σq
′
b (µ)nq,q

′
red . (7.25)

The residual norm ‖R(µ)‖Wh
from Lemma 7.1.4 is also e�ciently com-

putable by

‖R(µ)‖2Wh
=(

ured(µ)
)tKred(µ)ured(µ)− 2

(
ured(µ)

)t
mred(µ) + nred(µ). (7.26)

Proof. The e�cient computability of (7.1.21)-(7.1.25) follows from the

fact that all matrices from De�nition 7.1.5 are low dimensional. Thus, also

equation (7.1.26) is e�ciently computable. Furthermore, it can be easily
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seen, that

‖R(µ)‖2Wh
= 〈R(µ), R(µ)〉Wh

= 〈Lh(µ)[ured(µ)]− bh(µ),Lh(µ)[ured(µ)]− bh(µ)〉Wh

=
(
ured(µ)

)tKred(µ)ured(µ)− 2
(
ured(µ)

)t
mred(µ) + nred(µ). (7.27)

�

7.2. Overview on RBmatlab

The Matlab based software package RBmatlab is a library of functions

useful for reduced basis method implementations. For rapid prototyping, it

comes with numerical schemes for several �nite volume and �nite element

discretizations of parametrized partial di�erential equations in one or two

dimensions based on rectangular or triangular grids. For all these schemes a

reduced counterpart exists, which can be used to e�ciently compute solutions

on a reduced basis space. For the generation of the reduced basis spaces and

empirical interpolation data, all the algorithms described in Chapter 4 are

implemented.

In this chapter, we do not want to delve into the details of the above

implementations, but analyze the main parts of the software and how these

interact with each other. From these observations, we will derive necessary

interfaces for other software packages in the next section.

First, we concentrate on the general course of action in RBmatlab that

can be regarded as a user interface for both the o�ine phase of a reduced

basis method execution cycle and the e�cient simulations during the online

phase. Figure 7.2.1 illustrates the main methods in the order as they are

called and describes them shortly.

The �rst step is optional and can be used to construct parameter in-

dependent high�dimensional data structures which is important, if e.g. a

complex grid structure is needed for every detailed simulation. In this case,

it can pay o� to externalize the initialization into a parameter independent

call. The method gen_detailed_data in step 3 handles the generation of re-

duced basis spaces and empirical interpolation data as described in Chapter

4. In the function body, no high�dimensional computations shall be pro-

cessed. Instead all these computations shall be encapsulated in specialized

method calls, as sketched in Figure 7.2.1 for the example of an abstract

greedy algorithm. The same holds true for the next step, in which low�

dimensional, but still parameter independent Gramian matrices and vectors

are assembled. The time and memory demanding assembling is delegated to

the method rb_operators. In Table 7.2.1 possible calls of this method are
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1.
model_data=gen_model_data(model)

Constructs parameter independent high dimensional data for simula-

tions, e.g. a mesh of the domain.

2.
sim=detailed_simulation(model, model_data)

Computes parameter dependent high dimensional solutions uh(µ) as in

De�nition 7.1.2.

3.
detailed_data=gen_detailed_data(model, model_data)

Generates reduced basis space for example by an algorithm from
Chapter 4. For the example from Section 7.1, we would use the
Basic-greedy algorithm by calling high dimensional methods:

detailed_data=init_data_basis(model, detailed_data)

Initialize reduced basis space

detailed_data=rb_extension(detailed_data, µ)

Extend reduced basis space by uh(µ).

and one that evaluates the error estimate η(µ). (c.f. Algorithm 4.2.1)

4.
reduced_data =gen_reduced_data(model, detailed_data)

Generates reduced vectors and matrices as in De�nition 7.1.5 using the
method
[Gramians] =rb_operators(model, detailed_data, op, 1)

C.f. Table 7.2.1 for details.

5.
rb_sim =rb_simulation(model, reduced_data )

Computes a reduced solution Dofs ured(µ) and the a posteriori error

estimate η(µ), e.g. as in De�nition 7.1.3 and Lemma 7.1.4.

6.
sim=rb_reconstruction(model, detailed_data, rb_sim )

Computes a reduced solution ured(µ).

7.
p=plot_sim_data(model, detailed_data, sim)

Visualizes a vector given by sim, this can be obtained by a detailed sim-

ulaton ured(µ) or as a reconstructed reduced simulation ured(µ).

Figure 7.2.1. Illustration of the course of action for reduced
basis methods in RBmatlab. Method calls involving high�
dimensional computations are surrounded with gray shaded boxes.
The data structures model_data, sim_data and detailed_data

are high-dimensional and depending on O(H), reduced_data,

Gramians and rb_sim are low-dimensional data structures de-
pending on O(N).
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illustrated for the general example from Section 7.1. Finally, in step 5 the

reduced basis scheme and the error estimator can be e�ciently computed.

Here, it is also possible to compute an output functional. If the user wants

to visualize the reduced simulation, it needs to be reconstructed from the

computed low dimensional Dof vector. Thus, the visualization takes two

additional steps.

rb_operators(model, detailed_data, decomp_mode, opstring)

opstring
decomp_mode

1 2

<Φ, Φ>_W
{

ΦtWΦ
}

{1}

<L[Φ], Φ>_W
{

(LqhΦ)tWΦ
}QL
q=1

{
σqL(µ)

}QL
q=1

<L[Φ], L[Φ]>_W
{

(LqhΦ)tWLq′h Φ
}QL
q,q′=1

{
σqL(µ) · σq′L (µ)

}QL
q,q′=1

<L[Φ],b>_W
{

(LqhΦ)tWbq
′
h

}
1≤q≤QL
1≤q′≤Qb

{
σqL(µ) · σq′b (µ)

}
1≤q≤QL
1≤q′≤Qb

<b, Φ>_W
{

(bqh)tWΦ
}Qb
q=1

{
σqb (µ)

}Qb
q=1

<b, b>_W
{

(bqh)tWbq
′
h

}Qb
q,q′=1

{
σqb (µ)σq

′
b (µ)

}Qb
q,q′=1

Table 7.2.1. Illustration for the computation of Gramian
matrices with the rb_operators method. The table shows
possible return values for various arguments decomp_mode

and opstring.

7.3. Software concept

Now, that we have understood the main functions in RBmatlab and

got an overview on the methods involving high�dimensional computations,

we want to de�ne an abstract concept based on the main software parts that

we can identify in any reduced basis application.

These parts are

• a detailed scheme, providing a solver for parametrized solutions, and

also visualization routines,

• basis space manipulation, i.e. the storage handling and the algorith-

mic extension of reduced basis spaces and empirical interpolation

data,

• a reduced matrix assembler, which e�ciently computes reduced ma-

trices as illustrated in Table 7.2.1,
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trix assembling
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Figure 7.3.1. Call graph for main software parts in RB-
matlab. The numbers refer to the steps in the course of
action in Figure 7.2.1

• a basis generation algorithm, like the greedy algorithms de�ned in

Chapter 4,

• a reduced scheme conducting all reduced simulations, including the

computation of output functionals and error estimates, and

• the user interface as described in the previous section.

Figure 7.3.1 illustrates the call graph between these software parts as it

can be observed inRBmatlab. From these calls, we can derive the necessary

interfaces the software parts need to provide. The numbers next to the

arrows indicate the step numbers in the usual course of action as described

in the previous chapter and in Figure 7.2.1. The internal calls which are

not accessible through user interface are denoted with small letters. In the

following, we want to de�ne these internal calls and and analyze them.

Call (a) depends on the selected basis generation algorithm. It is very dif-

�cult to generalize, because the requirements of basis generation algorithms

can di�er signi�cantly. For greedy algorithms based on the X-greedy from

Algorithm 4.2.1, however, the basis space manipulaton part needs to provide

methods for the initialization of the reduced basis and for an incremental

extension.

The reduced matrix assembler needs via (b) access to all operators and

functions which are separable in the parameter and utilized by the detailed

scheme. So, it requires an interface for operators and functions which con-

trols access to their parameter independent components and de�nes a unique

identi�er, such that the assembler can be used as in Table 7.2.1. On the other

hand, the matrix assembler needs access to the reduced basis functions via

(c), preferably returned as a matrix of column vectors.
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Figure 7.3.2. Call graph for main software parts in our
abstract software concept. High�dimensional parts can be
strictly separated from the low�dimensional ones. The num-
bers refer to the steps in the course of action in Figure 7.2.1

As during basis generation the reduced basis spaces are enriched with so-

lution snapshots from the detailed scheme, the basis space manipulation part

needs to initiate such high�dimensional simulations. This call (d), however,

is equivalent to the user interface call (2.).

The �gure also nicely depicts the strict separation between high�dimen-

sional and low�dimensional computations. As the goal is to strictly separate

these two, in order to make use of specialized hardware architectures and

software tools, we split the parts and such allow them to exist in two dif-

ferent programs with a client�server communication part in between. The

result is illustrated in Figure 7.3.2. All calls bridging the boundary between

the low- and the high�dimensional software parts, i.e. (2.,4.,6.,7.,a), need to

communicate their requests via a communication interface which forwards

the request to a server. Note, that only low�dimensional data is communi-

cated.

Additionally, we suggest to split the high�dimensional software into two

tiers in the face of rapid re�usability of existing detailed schemes. Tier I is the

problem dependent part that needs to be adjusted for every discretization

by the implementation of interfaces for (2., 7., b), whereas tier II can be

considered as more robust and needs to be adjusted for new basis generation

algorithms only. Note, that the data containers utilized in the two tiers may
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di�er signi�cantly as well. Whereas tier I usually deals with linear algebra

on sparse matrices and vectors, tier II requires dense linear algebra routines

and containers.

In the next section, we focus on the software package dune-rb which

implements many methods in tier II, provides interfaces and example imple-

mentations for tier I and provides methods for TCP/IP communication with

RBmatlab. Thus, it brings the �exibility and power of Dune to the reduced

basis world.

7.4. High�dimensional computations with dune-rb

The C++ software Dune [3, 2] has been developed for rapid and e�cient

implementation of numerical solvers for partial di�erential equations which

are based on grid�based methods. Many existing solver implementations can

be run e�ciently on high performance hardware architectures. Due to its

interface based design, pursuing the goals of re�usability and exchangeability

of code parts, Dune is a perfect extension for our reduced basis framework.

Dune comes as a collection of smaller software units packaged as modules.

The most important modules include

• dune-grid providing a common interface for structured and un-

structured, conforming and non�conforming, parallel grids, and im-

plementations of those,

• dune-istl for solvers of linear and non�linear equation system and

containers for e�cient storage of sparse matrices and vectors,

• dune-localfunctions provides a library of so�called local basis

functions which are de�ned on a generic reference domain only, and

from which global basis functions can be constructed in an abstract

and e�cient way, and

• dune-common comprising basic data functions, like dense matrices

and vectors, and auxiliary scripts that help to automatically resolve

dependencies between Dune modules.

Furthermore, there exist di�erent modules with implementations of dis-

cretizations for partial di�erential equations which are based on the listed

core modules. Examples for this discretization modules are Dune-FEM,

dune-pdelab and DuMux, which are based on the above core modules.

Our own Dune module dune-rb shall be build on top of such discretiza-

tion modules. In [26], we showed how a simple linear evolution problem im-

plemented in Dune-FEM can be turned into a reduced basis aware scheme.

In this presentation, however, we will conclude with numerical experiments

for a simple elliptic problem based on a dune-pdelab implementation. The

dune-pdelab module suits our needs very well, as its implementations are
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operator based, and allow a simple substitution of linear solvers and matrix-

/vector containers. Especially, the last fact is of high interest for us, because

as discussed earlier, the requirements on a linear algebra library di�er cru-

cially between the two high�dimensional software tiers I and II. Whereas

numerical schemes usually depend on sparse operators and linear algebra

algorithms, the assembling of the reduced matrices and vectors and the re-

duced basis generation require e�cient dense matrices and routines for tasks

like eigenvalue computations or orthogonalization. One software library that

comes with e�cient implementations for both tiers, is the linear algebra pack-

age Eigen which is used in our numerical experiment.

7.4.1. Interfaces. In the following, we describe the most important

interface classes that ensure its implementations provide the necessary func-

tionality in order to make all the calls depicted in Figure 7.3.2.

7.4.1.1. Interfaces in tier I. In tier I, we have two main interfaces: First,

the Detailed::Solver::Connector::Interface comprises methods

• solve() for calls (d) and (2.), computing a detailed simulation for

a speci�ed parameter vector and returning the resultant Dof vector,

• visualize() for call (7.), writing a vtk �le to the harddrive which

can be visualized by external programs then and

• getSystemMatrix() and getSystemVector() in order to return

problem dependent matrices and vectors that need to be reduced.

In the example from Section 7.1, the operators Lh(µ) and the func-

tions bh(µ) are returned here.

If separable, the system matrices implement interface classes denoted by

LA::SeparableParametric::IMatrix and ::IVector. These classes have

methods

• component(), returning the q-th parameter independent compo-

nents of a separable decomposition, e.g. Lqh,
• coefficients(), for the parameter dependent coe�cient functions,

e.g.
(
σqL
)QL
q=1

, and

• symbolicCoefficients(), returning strings that can be evaluated

in Matlab as function handles such that during a reduced simula-

tion, we can omit to communicate with the detailed scheme.

Furthermore, every separable matrix or vector needs to have a unique iden-

ti�er string. The above interfaces standardize the call (b).

7.4.1.2. Interfaces in tier II. In tier II, we have two main classes: the

reduced basis space Offline::Space::RB and a tool to assemble reduced

matrices for linear evolution problems Offline::Generator::LinStat.

The reduced basis space comes with a method
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• reconstruct(), which reconstructs a low dimensional Dof vector

in the original high dimensional space by a linear combination of

the basis functions. This is for call (6.).

• several methods in order to add, remove or return basis functions.

The latter is needed for call (a) and (c). The other only for (a).

However, depending on the implementation of the basis generation

algorithm, it might be necessary to extend the implementation.

The other class derived from Offline::Generator::Iterator provides

exactly the functionality as the RBmatlab function rb_operators, and it

is needed for call (4.).

7.4.1.3. Communication interface. As the reduced basis method is split

into two independent units, data needs to be transferred betweenRBmatlab

and dune-rb e�ciently. For this, dune-rb comprises implementations of

serializeable data container interface MatlabComm::SerializedArray. Its

two implementations RBMatrix and MXMatrix both mimick the behavior

of the classical Matlab data containers �matrix�, �struct�, �cell array� and

�string�. RBMatrix utilizes the STL data containers and Eigen matrices for

the underlying data storage, whereas the data in MXMatrix is stored in the

mxArray data structure provided by Matlab. As both implementations can

be serialized they can be interchanged via TCP/IP connections or over the

hard-drive.

We have two possibilities in order to connect the two software units

RBmatlab and dune-rb:

(1) Either we compile the program based on dune-rb as a mex-library,

which allows it to be called directly from the Matlab prompt, or

(2) we compile it as a server waiting for TCP/IP communication from

the RBmatlab side.

In both cases, calls bridging the barrier between both units are initiated from

RBmatlab by a method call of the form

[ret1,ret2]=mexclient('operation',arg1,arg2)

where operation is the name of an interface function, e.g. rb_operators.

The arguments and return values are wrapped as std::vector<MXMatrix *>

objects by the mex library. For the client�server case, these arguments are

then serialized as std::vector<RBMatrix *> objects on the server side. For

this reason, the server does not depend on the Matlab mex library. This

is also why we prefer the second alternative, because the compilation of a

complex C++ program as a mex library can be very di�cult as certain

constraints on the compiler versions and options apply.
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The main classes for the communication between the two software units

are either MatlabComm::Server::MexLibrary for compiling a program as a

mex library or MatlabComm::Server::Sockets for compilation as a TCP/IP

server. Both of these classes are singletons which must be bound to a so�

called server facade. A server facade object is always derived from the inter-

face class MatlabComm::Facade::Base and has an entry point

void mexFunction(std::vector<RBMatrix*> largs,

std::vector<RBMatrix*> rargs);

from which methods de�ned by the operation string, stored in rargs[0]

can be called. Thus, the server facade can be seen as a second user interface,

as it gathers all the methods a dune-rb program provides and makes the

high�dimensional software parts from Figure 7.3.2 available to Matlab.

For example, for the general stationary problem de�ned in Section 7.1,

the following methods are de�ned in our facade MatlabComm::Facade::LinStat

implemented in dune-rb:

• gen_model_data,

• detailed_simulation,

• init_data_basis,

• rb_extension,

• rb_operators,

• rb_reconstruction and

• get_rb_size.

7.5. Example: Poisson problem

In this section, we provide a proof of concept for our abstract con-

cept described above by implementing a �nite volume discretization of a

parametrized elliptic problem. Earlier, in [22], we used dune-rb with a

linear evolution problem based on the discretization module Dune-FEM

[20].

Here, we want to solve a Poisson problem on a bounded domain Ω ⊂
Rd, d = 2, 3, and �nd functions u ∈ BV (Ω)∩L∞(Ω) ⊂ L2(Ω), such that the

partial di�erential equation

−k∆u−mu = 1 in Ω (7.28)

u = 0 on ∂Ω (7.29)

with zero Dirichlet boundary conditions and parameters k,m > 0 is ful�lled.

The parametrization of the problem is realized by parameter vectors µ :=

(k,m) ∈M := [1, 10]× [0, 0.2].
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For discretization, a �nite volume scheme as in Section 3.1.1 is used,

based on a discrete function space Wh spanned by H basis functions whose

support is bounded to elements of an underlying admissible grid T as given

in De�nition 3.1.2. Then, we obtain a numerical scheme as in De�nition

7.1.2 by specifying the separable discretization operator

Lh(µ) := kLdi� +mLid (7.30)

with the negative identity operator component Lid : Wh → Wh, uh 7→ −uh
and the Laplace operator component Ldi� :Wh →Wh de�ned by

(Ldi� [uh])i = − 1

|ei|
∑

j∈Nin(i)

uh,j − uh,i
|xj − xi|

|eij |, i = 1, . . . ,H. (7.31)

The right hand side function is parameter independent and �xed to the

constant function

bh(µ) = 1. (7.32)

Figure 7.5.1 depicts solution snapshots for various parameter con�gura-

tions. For m = 0, the solutions are scaled by the �rst parameter k, such

that a single reduced basis functions is enough to approximate these func-

tions. The parameter m increases the steepness of the solutions close to the

boundary of the domain. Due to the generality of the grid implementations

in Dune, the computations can be carried out in two and three dimensions.

As described in Section 7.1, the reduced scheme from De�nition 7.1.3

and the error estimate from Lemma 7.1.4 can be applied. For this reason,

we can create a reduced basis space Wred ⊂ Wh spanned by basis functions

{ϕn}Nn=1 with a greedy algorithm. In this case, we use the BASIC�greedy

algorithm as de�ned in Section 4.2.1.

7.5.1. Implementation. The numerical scheme including the discrete

operators are implemented based on the discretization module dune-pdelab

which provides classes for the assembling of operators based on local operator

restrictions.

As described in Section 7.3, for the extension of the scheme in dune-rb

only the tier I software parts are necessary. In our case, the numerical scheme

is wrapped by a class called Detailed::Solver::Connector::PoissonCCFV

exporting the detailed simulation, the separable operators and the right hand

side function, and a method to write out a vtk [67] �le for visualization of a

given solution function. The separable containers are represented by classes

SeparableLaplaceOperator and SeparableLaplaceResidual for the oper-

ator Lh(µ) respectively the right hand side function bh(µ).
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Figure 7.5.1. Solution snapshots for di�erent parameter
vectors. First row: µ = (1, 0) and µ = (1, 0.1), Second
row: µ = (10, 0) and µ = (10, 0.1), Third row: 3D problem
µ = (1, 0) and µ = (1, 0.01)

7.5.2. Numerical results. In Figure 7.5.2 we demonstrate the behav-

ior of the error estimator during the construction of the reduced basis via the

BASIC-greedy algorithm. The error bound in logarithmic scale is plotted

against the size of the reduced basis, varying from one to the maximum num-

ber of generated reduced basis function, which in this experiment is about

10. Note, that independent of the high dimensional problem size, we observe

the same rate of exponential error decay. So, the time gain factor induced by

the reduced basis method increases for higher dimensional problems. This
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Figure 7.5.2. Maximum of error bound over a set of 200
randomly chosen training parameters in logarithmic scale for
di�erent high dimensional problem sizes.

ø-time[s]
H N max. error detailed reduced reconstr. o�ine-time[s]

4,096 8 8.81 · 10−4 0.33 1.53 · 10−6 0.092 4.32
16,384 9 8.92 · 10−4 2.9 1.02 · 10−5 0.259 27.82
65,536 10 5.75 · 10−5 39.84 9.37 · 10−4 0.987 399.93
262,144 11 2.15 · 10−4 621.62 9.33 · 10−4 5.679 6,793.21
32,768 9 3.61 · 10−5 13.75 8.32 · 10−4 1.025 113.85

Table 7.5.1. Average run�times and maximum error esti-
mates for a set of 100 random test parameters. The last row
refers to a reduced simulation of a problem in three dimen-
sions.

fact is very noticeable in Table 7.5.1 in which average run�times and max-

imum error estimates over 100 test parameters are shown. The time gain

ratio between a detailed and a reduced simulation varies from 2.25 · 105 for

the smallest problem size to 6.65 · 105 for the largest problem size. We also

observe signi�cant costs for the reconstruction of the reduced solutions in

the original discrete function space. Therefor, the use of output functionals

instead of reconstructed solutions, is highly recommended.

7.6. Outlook: subgrid extraction for empirical interpolation

So far, we have only shown how linear problems with operators and data

functions which are separable in the parameter can be integrated into our

software concept. For non�linear problems, however, this is not applicable,

as the empirical interpolation method needs to be implemented as well. For
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this, the reduced scheme needs to e�ciently compute operator evaluations

at empirical interpolation Dofs. Thus, two implementations of the same

operator are needed.

In the setting of Figure 7.3.1 where the detailed scheme is implemented

in RBmatlab, no duplication of the operators is necessary, as the discrete

operators are grid based and the grid implementations in RBmatlab enable

us to construct sub�grids which are e�cient w.r.t. memory consumption and

access to geometric or topological information. If during the o�ine�phase

such a sub�grid is computed that holds all necessary information in order

to compute operator evaluations at the empirical interpolation Dofs, the

same operator implementation used in the detailed scheme can be re�used

in the reduced one. This approach is similar to the �sample mesh� method

introduced in [11].

The sub�grid extraction can be surely transferred to the setting in Fig-

ure 7.3.2 with the further di�culty that the two variants of the grid and the

non�linear operators are located in two di�erent software units, and possibly

implemented in di�erent programming languages. In order to deal with this,

the tier II software layer should be extended by an RBmatlabGrid imple-

mentation, that can be initialized with Matlab data structures comprising

all geometry and topology information of a sub�grid. Then, the operators

in the detailed scheme software part can be compiled as a library method

based on an RBmatlabGrid instance and deployed for e�cient usage in the

reduced scheme.



CHAPTER 8

Conclusion and outlook

In this thesis, we have developed a reduced basis method, that can be

applied to a broad class of parametrized evolution problems. This method in-

cludes an o�ine-/online decomposition, e�cient a posteriori error estimates,

and quickly convergent basis generation algorithm.

We do not need to make assumptions on the non�linearity of the un-

derlying solver. The main ingredient which makes us achieve these goals,

is the empirical interpolation of operators, introduced in 2. We transferred

results on error analysis from the original empirical interpolation method for

functions [1] to our new setting, and extended it by discussions on the behav-

ior of empirical operator interpolants under di�erentiation and on invariant

operator properties in Section.2.4.

In order to e�ciently generate reduced basis spaces and empirical in-

terpolants, a variant of the classical greedy algorithms was proposed that

automatically synchronizes the quality of both basis spaces. In numerical

experiments, we observed that it could reconstruct the optimal ratio be-

tween the two basis spaces, and observed a time gain in the o�ine phase at

small basis sizes.

Furthermore, in the �eld of basis generation algorithms, we demonstrated

extensions to the greedy algorithms, that adaptively generate multiple ba-

sis spaces or empirical operator interpolations based on a split in the time

domain.

In our numerical experiments, all the proposed algorithms and schemes

proved to be applicable to three di�erent partial di�erential equations, and

showed a reduction in time of about one order of magnitude. The numerical

experiments were chosen in order to gain experience on our path to the

�nal goal, the simulation of immiscible two phase �ow in a porous medium.

This helped to �nally construct a reduced scheme for such system of partial

di�erential equations, whose simulation time could be reduced signi�cantly

in Chapter 6.

The developed a posteriori error bound turned out to be a very good

choice in order to construct the reduced basis spaces by the developed greedy

algorithm, and already produced fairly good e�ciency results although the

needed Lipschitz constants were not optimized as discussed in Chapter 3.

113
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Finally, we analyzed our software packages used for numerical experi-

ments, in order to develop an abstract software concept, that allows rapid

prototyping of reduced basis methods for already available detailed schemes.

Perspectives

The work presented in this thesis, gives rise to some obvious extension

steps. The error bound e�ciency should be improved by a more parameter

sensitive computation of the used Lipschitz constants. This might lead to

an improvement in the greedy generation of the reduced basis spaces, but at

least enhances necessary reliability statements about reduced solutions.

Furthermore, the entire framework developed for the scalar evolution

equations should be transferred to the two phase �ow problem. Thus, in a

next step, a parametrization could be introduced, and the greedy algorithms

for the basis generation need to be adapted to the multi�variable case. This

will also depend on e�cient a posteriori error estimates.

In order to enhance the possibility to construct reduced basis method

prototypes for existing Dune implementations, it is desirable to extend the

existing software package dune-rb by methods for e�cient empirical oper-

ator interpolation on this side. A solution was already proposed in Section

7.6.
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Constants for �nite volume operators

sdfasdf asdfa asdf

asdf

115





Bibliography

[1] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An 'empirical

interpolation' method: application to e�cient reduced-basis discretiza-

tion of partial di�erential equations. C. R. Math. Acad. Sci. Paris Series

I, 339:667�672, 2004.

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,

M. Ohlberger, and O. Sander. A Generic Grid Interface for Parallel and

Adaptive Scienti�c Computing. Part II: Implementation and Tests in

DUNE. Computing, 82(2�3):121�138, 2008.

[3] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger,

and O. Sander. A Generic Grid Interface for Parallel and Adaptive

Scienti�c Computing. Part I: Abstract Framework. Computing, 82(2�

3):103�119, 2008.

[4] Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Guer-

gana Petrova, and Przemyslaw Wojtaszczyk. Convergence rates for

greedy algorithms in reduced basis methods. SIAM J. Math. Anal.,

43(3):1457�1472, 2011.

[5] R.H. Brooks and A.T. Corey. Hydraulic properties of porous media.

Hydrology Papers, 1964.

[6] S.E. Buckley and M.C. Leverett. Mechanism of �uid displacement in

sands. Petroleum Technology, 146(1337):107�116, 1942.

[7] Annalisa Bu�a, Yvon Maday, Anthony T. Patera, Christophe

Prud'homme, and Gabriel Turinici. A priori convergence of the greedy

algorithm for the parametrized reduced basis. ESAIM-Math. Model.

Numer. Anal., 46(3):595�603, 2012. Special Issue in honor of David

Gottlieb.

[8] C. Canuto, T. Tonn, and K. Urban. A-posteriori error analysis of the re-

duced basis method for non-a�ne parameterized nonlinear pde's. SIAM

J. Numer. Anal, 47(e):2001�2022, 2009.

[9] K. Carlberg. Model Reduction of Nonlinear Mechanical Systems via

Optimal Projection and Tensor Approximation. PhD thesis, Stanford

University, 2011.

117



118 Bibliography

[10] K. Carlberg, C. Bou-Mosleh, and C. Farhat. E�cient non-linear model

reduction via a least-squares Petrov�Galerkin projection and compres-

sive tensor approximations. International Journal for Numerical Meth-

ods in Engineering, 86(2):155�181, 2011.

[11] K. Carlberg, J. Cortial, D. Amsallem, M. Zahr, and C. Farhat. The

GNAT nonlinear model reduction method and its application to �uid

dynamics problems. In 6th AIAA Theoretical Fluid Mechanics Confer-

ence, Honolulu, Hawaii, June 27�30, AIAA Paper 2011-3112, 2011.

[12] K. Carlberg and C. Farhat. A low-cost, goal-oriented `compact proper

orthogonal decomposition' basis for model reduction of static systems.

International Journal for Numerical Methods in Engineering, 86(3):381�

402, 2011.

[13] J. Carrillo. Entropy solutions for nonlinear degenerate problems. Arch.

Ration. Mech. Anal., 147(4):269�361, 1999.

[14] S. Chaturantabut and D. C. Sorensen. A state space error estimate for

POD�DEIM nonlinear model reduction. Technical report, CAAM, Rice

U., December 2010. Technical Report TR10-32.

[15] S. Chaturantabut and D. C. Sorensen. Application of POD and DEIM

to dimension reduction of nonlinear miscible viscous �ngering in porous

media. Math. Comput. Model. Dyn. Syst., 17(4):337�353, 2011.

[16] S. Chaturantabut and D.C. Sorensen. Discrete empirical interpolation

for nonlinear model reduction. SIAM J. Sci. Comp., 32(5):2737�2764,

2010.

[17] Y. Chen, J.S. Hesthaven, Y. Maday, and J. Rodríguez. A monotonic

evaluation of lower bounds for inf-sup stability constants in the frame of

reduced basis approximations. Comptes Rendus Mathematique, 346(23-

24):1295�1300, 2008.

[18] Zhangxin Chen, Guanren Huan, and Yuanlen Ma. Computational meth-

ods for multiphase �ows in porous media. SIAM, 2006.

[19] P.G. Ciarlet. The �nite element method for elliptic problems. North-

Holland, 1978.

[20] A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger. A Generic Inter-

face for Parallel and Adaptive Scienti�c Computing: Abstraction Prin-

ciples and the DUNE-FEM Module. Computing, 90(3�4):165�196, 2010.

[21] M. Dihlmann, M. Drohmann, and B. Haasdonk. Model reduction of

parametrized evolution problems using the reduced basis method with

adaptive time partitioning. In D. Aubry and P. Diez, editors, Interna-

tional Conference on Adaptive Modeling and Simulation ADMOS 2011,

2011.



Bibliography 119

[22] M. Drohmann, B. Haasdonk, S. Kaulmann, and M. Ohlberger. A soft-

ware framework for reduced basis methods using DUNE-RB and RB-

matlab. In A. Dedner, B. Flemisch, and R. Klöfkorn, editors, Advances

in DUNE. Springer, to appear.

[23] M. Drohmann, B. Haasdonk, and M. Ohlberger. Reduced basis method

for �nite volume approximation of evolution equations on parametrized

geometries. In Proceedings of ALGORITMY 2009, pages 111�120, 2008.

[24] M. Drohmann, B. Haasdonk, and M. Ohlberger. Adaptive reduced basis

methods for nonlinear convection-di�usion equations. In J. Fort et al.,

editor, Finite Volumes for Complex Applications VI - Problems & Per-

spectives, volume 1 of Springer Proceedings in Mathematics 4, pages

369�377. Springer, 2011.

[25] M. Drohmann, B. Haasdonk, and M. Ohlberger. Reduced basis ap-

proximation for nonlinear parametrized evolution equations based on

empirical operator interpolation. SIAM J. Sci Comp, 34:A937�A969,

2011. submitted.

[26] Martin Drohmann, Bernard Haasdonk, Sven Kaulmann,

and Mario Ohlberger. A software framework for reduced

basis methods using &lt;span style="font-variant:small-

caps"&gt;&lt;small&gt;dune&lt;/small&gt;&lt;/span&gt;-

rb and &lt;span style="font-variant:small-

caps"&gt;&lt;small&gt;rbmatlab&lt;/small&gt;% lt;/span&gt;. In

Andreas Dedner, Bernd Flemisch, and Robert Klöfkorn, editors,

Advances in DUNE, pages 77�88. Springer Berlin Heidelberg, 2012.

10.1007/978-3-642-28589-96.

[27] J. Eftang, D. Huynh, D. Knezevic, and A. Patera. A two-step certi�ed

reduced basis method. Journal of Scienti�c Computing, 51:28�58, 2012.

10.1007/s10915-011-9494-2.

[28] Jens L. Eftang, Martin A. Grepl, and Anthony T. Patera. A posteriori error

bounds for the empirical interpolation method. Comptes Rendus Mathema-

tique, 348(9�10):575�579, May 2010.

[29] Jens L. Eftang, David J. Knezevic, and Anthony T. Patera. An "hp" cer-

ti�ed reduced basis method for parametrized parabolic partial di�erential

equations. Mathematical and Computer Modelling of Dynamical Systems,

17(4):395�422, 2011.

[30] Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. Finite volume

methods. In Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal.,

VII, pages 713�1020. North-Holland, Amsterdam, 2000.

[31] M.A. Grepl. Reduced-basis Approximations and a Posteriori Error Estima-

tion for Parabolic Partial Di�erential Equations. PhD thesis, Massachusetts



120 Bibliography

Institute of Technology, May 2005.

[32] M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera. E�cient reduced-

basis treatment of nona�ne and nonlinear partial di�erential equations.

M2AN, Math. Model. Numer. Anal., 41(3):575�605, 2007.

[33] M.A. Grepl and A.T. Patera. A posteriori error bounds for reduced-basis ap-

proximations of parametrized parabolic partial di�erential equations. M2AN,

Math. Model. Numer. Anal., 39(1):157�181, 2005.

[34] B Haasdonk. Convergence rates of the pod-greedy method. Technical Re-

port 23, SimTech Preprint 2011, University of Stuttgart, 2011.

[35] B. Haasdonk, M. Dihlmann, and M. Ohlberger. A training set and multi-

ple bases generation approach for parametrized model reduction based on

adaptive grids in parameter space. Mathematical and Computer Modelling

of Dynamical Systems, 17(4):423�442, 2011.

[36] B. Haasdonk and M. Ohlberger. Adaptive basis enrichment for the reduced

basis method applied to �nite volume schemes. In Proc. 5th International

Symposium on Finite Volumes for Complex Applications, pages 471�478,

2008.

[37] B. Haasdonk and M. Ohlberger. Reduced basis method for explicit �nite vol-

ume approximations of nonlinear conservation laws. In Proc. 12th Interna-

tional Conference on Hyperbolic Problems: Theory, Numerics, Application,

2008.

[38] B. Haasdonk and M. Ohlberger. Reduced basis method for �nite volume

approximations of parametrized linear evolution equations. M2AN, Math.

Model. Numer. Anal., 42(2):277�302, 2008.

[39] B. Haasdonk, M. Ohlberger, and G. Rozza. A reduced basis method for

evolution schemes with parameter-dependent explicit operators. Electronic

Transactions on Numerical Analysis, 32:145�161, 2008.

[40] D. B. P. Huynh, D. J. Knezevic, and A. T. Patera. A static condensation

reduced basis element method: Approximation and a posteriori error esti-

mation. Technical report, (online), 2011.

[41] DBP Huynh, DJ Knezevic, JW Peterson, and AT Patera. High-�delity real-

time simulation on deployed platforms. Computers & Fluids, 43(1):74�81,

2011.

[42] D.B.P. Huynh, G. Rozza, S. Sen, and A.T. Patera. A successive constraint

linear optimization method for lower bounds of parametric coercivity and

inf-sup stability constants. C. R. Math. Acad. Sci. Paris Series I, 345:473�

478, 2007.

[43] I.T. Jolli�e. Principal component analysis, volume 2. Springer-Verlag, 2002.

[44] Nadine Jung. Error Estimation for Parametric Model Order Reduction and

its Application. PhD thesis, Technische Universität München, 2011.



Bibliography 121

[45] M. Kahlbacher and S. Volkwein. Galerkin proper orthogonal decomposition

methods for parameter dependent elliptic systems. Discussiones Mathemat-

icae: Di�erential Inclusions, Control and Optimization, 27:95�117, 2007.

[46] K.H. Karlsen and N.H. Risebro. On the uniqueness and stability of entropy

solutions of nonlinear degenerate parabolic equations with rough coe�cients.

Discrete Contin. Dyn. Syst., 9(5):1081�1104, 2003.

[47] DJ Knezevic and JW Peterson. A high-performance parallel implementation

of the certi�ed reduced basis method. computer methods in applied mechan-

ics and engineering. Technical report, preprint submitted to CMAME, 2010.

[48] D. Kröner. Numerical Schemes for Conservation Laws. John Wiley & Sons

and Teubner, 1997.

[49] Oliver Lass and Stefan Volkwein. Adaptive pod basis computation for

parametrized nonlinear systems using optimal snapshot location. Techni-

cal report, University of Konstanz, 2012.

[50] T. Lassila, A. Manzoni, and G. Rozza. On the approximation of stability

factors for general parametrized partial di�erential equations with a two-level

a�ne decomposition. Technical report, MATHICSE, 2011. report 8.2011.

[51] L. Machiels, A.T. Patera, J. Peraire, and Y. Maday. A general framework for

�nite element a posteriori error control: application to linear and nonlinear

convection�dominated problems. In Proc. ICFD Conference on Numerical

Methods for Fluid Dynamics, 1998.

[52] Y. Maday. Reduced basis method for the rapid and reliable solution of partial

di�erential equations. In European Mathematical Society, editor, Proceedings

of International Conference of Mathematicians, pages 1�17, 2006.

[53] Y. Maday, N.C. Nguyen, A.T. Patera, and G.S.H. Pau. A general, multipur-

pose interpolation procedure: the magic points. Communications on Pure

and Applied Analysis, 8(1):383�404, January 2009.

[54] Yvon Maday, Anthony T. Patera, and Gabriel Turinici. A priori convergence

theory for reduced-basis approximations of single-parameter elliptic partial

di�erential equations. Journal of Scienti�c Computing, 17:437�446, 2002.

10.1023/A:1015145924517.

[55] A. Manzoni, A. Quarteroni, and G. Rozza. Computational reduction for

parametrized pdes: strategies and applications. Technical Report Report

05.2012, MATHICSE, EPFL, Lausanne, CH, 2012.

[56] Andrea Manzoni, Al�o Quarteroni, and Gianluigi Rozza. Model reduction

techniques for fast blood �ow simulation in parametrized geometries. Inter-

national Journal for Numerical Methods in Biomedical Engineering, 28(6-

7):604�625, 2012.

[57] A. Michel. A �nite volume scheme for two-phase immiscible �ow in porous

media. SIAM Journal on Numerical Analysis, 41(4):1301�1317, 2004.



122 Bibliography

[58] N. C. Nguyen, G. Rozza, and A.T. Patera. Reduced basis approximation

and a posteriori error estimation for the time-dependent viscous burgers'

equation. Calcolo, 46(3):157�185, 2009.

[59] NC Nguyen, AT Patera, and J. Peraire. A `best points' interpolation method

for e�cient approximation of parametrized functions. nternational journal

for numerical methods in engineering, 73(4):521�543, 2008.

[60] N.C. Nguyen, K. Veroy, and A.T. Patera. Certi�ed real-time solution of

parametrized partial di�erential equations. In S. Yip, editor, Handbook of

Materials Modeling, pages 1523�1558. Springer, 2005.

[61] A.T. Patera and G. Rozza. Reduced Basis Approximation and a Posteri-

ori Error Estimation for Parametrized Partial Di�erential Equations. MIT,

2007. Version 1.0, Copyright MIT 2006-2007, to appear in (tentative rubric)

MIT Pappalardo Graduate Monographs in Mechanical Engineering.

[62] Jan Pomplun and Frank Schmidt. Accelerated a posteriori error estima-

tion for the reduced basis method with application to 3d electromagnetic

scattering problems. SIAM Journal on Scienti�c Computing, 32(2):498�520,

2010.

[63] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Texts in

Applied Mathematics. Springer, Berlin Heidelberg, 2007.

[64] C.W. Rowley. Model reduction for �uids, using balanced proper orthogonal

decomposition. Int. J. Bifurcat. Chaos, 15(3):997�1013, 2005.

[65] G. Rozza. Shape design by optimal �ow control and reduced basis techniques:

Applications to bypass con�gurations in haemodynamics. PhD thesis, École

Polytechnique Fédérale de Lausanne, November 2005.

[66] G. Rozza, D.B.P. Huynh, and A.T. Patera. Reduced basis approximation

and a posteriori error estimation for a�nely parametrized elliptic coercive

partial di�erential equations. Arch. Comput. Meth. Eng., 15(3):229�275,

2007.

[67] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit:

An Object-Oriented Approach To 3D Graphics. Kitware, Inc., 4th edition

edition, 2006.

[68] V. N. Temlyakov. Greedy approximation. Acta Numerica, 17:235�409, 2008.

[69] D.B. Thomas, W. Luk, P.H.W. Leong, and J.D. Villasenor. Gaussian random

number generators. ACM Computing Surveys (CSUR), 39(4):11, 2007.

[70] T. Tonn and K. Urban. A reduced-basis method for solving parameter-

dependent convection-di�usion problems around rigid bodies. In P. Wessel-

ing, E. Onate, and J. Periaux, editors, ECCOMAS CFD 2006 Proceedings,

2006.

[71] Timo Tonn. Reduced-Basis Method (RBM) for Non-A�ne Elliptic

Parametrized PDEs. PhD thesis, University of Ulm, 2011.



Bibliography 123

[72] M.Th. van Genuchten. A Closed-form Equation for Predicting the Hydraulic

Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J., 44:892�898, 1980.

[73] K. Veroy and A.T. Patera. Certi�ed real-time solution of the parametrized

steady incompressible Navier-Stokes equations: Rigorous reduced-basis a

posteriori error bounds. Int. J. Numer. Meth. Fluids, 47:773�788, 2005.

[74] K. Veroy, C. Prud'homme, and A.T. Patera. Reduced-basis approximation

of the viscous Burgers equation: rigorous a posteriori error bounds. C. R.

Math. Acad. Sci. Paris Series I, 337:619�624, 2003.

[75] http://morepas.org/software/.





Erklärung

Hiermit versichere ich, Martin Drohmann, dass ich die Arbeit selbst-

ständig und nur mit den angegebenen Quellen und Hilfsmitteln erstellt habe.

Inhaltlich oder wörtlich übernommene Stellen, wurden als solche gekennze-

ichnet. Ich erkläre auÿerdem, dass die von mir vorgelegte Dissertation in

keinem anderen Promotionsverfahren im In- und Ausland in dieser oder ähn-

licher Form vorgelegt wurde.

Münster, den 24. Juni 2012

gez. Martin Drohmann

125


	Zusammenfassung
	Acknowledgments
	List of Figures
	Chapter 1. Introduction
	Goals and outline

	Chapter 2. Empirical operator interpolation
	2.1. Basis generation and Dof selection
	2.2. Interpolation efficiency
	2.3. Error analysis
	2.4. Invariant properties

	Chapter 3. Reduced basis method
	3.1. Evolution Scheme
	3.2. Reduced simulation scheme
	3.3. A posteriori error estimator

	Chapter 4. Basis generation
	4.1. Proper orthogonal decomposition
	4.2. Greedy algorithm
	4.3. Combined basis generation
	4.4. Control of error and efficiency

	Chapter 5. Numerical experiments
	5.1. Burgers equation
	5.2. Porous Medium Equation
	5.3. Example: Buckley–Leverett equation

	Chapter 6. Immiscible two phase flow in porous media
	6.1. Global pressure formulation
	6.2. Finite volume discretization
	6.3. Reduced basis scheme
	6.4. Numerical experiments

	Chapter 7. Abstract software framework
	7.1. Stationary reduced basis scheme
	7.2. Overview on RBmatlab
	7.3. Software concept
	7.4. High–dimensional computations with dune-rb
	7.5. Example: Poisson problem
	7.6. Outlook: subgrid extraction for empirical interpolation

	Chapter 8. Conclusion and outlook
	Perspectives

	Appendix A. Constants for finite volume operators
	Bibliography
	Erklärung

